TrendFollowingBot¶

A pragmatic trend-following strategy that pairs EMA trend detection with two simple, complementary entry patterns:

  1. a crossback into trend (price crosses the EMA and the very next bar opens on the trend side), and
  2. an ATR-scaled breakout away from the EMA (current open is beyond the EMA by k × ATR).

Exits (initial stop, trail/TP) and sizing are delegated to the shared bot base via your chosen ExitStrategy (e.g., TrailingATRExit, FixedRatioExit), so this class focuses purely on when to enter. It reads signals from the previous closed bar and places orders at the current bar open to avoid look-ahead. :contentReference[oaicite:0]{index=0}


Overview¶

  • Goal: Participate in sustained moves while avoiding most chop by requiring either a confirmed cross of the trend filter (EMA) or enough volatility-adjusted distance from it.
  • Trend filter: Exponential moving average of length trend_ema_span (default 50).
  • Volatility gate: ATR from the prior closed bar; breakout_atr_mult (default 1.5) scales how far from the EMA price must be to count as a breakout.
  • Signal timing: Compute on **bar *t-1; place the order at the **open of bar *t (no look-ahead).
  • Exits & sizing: Inherited from the base strategy (risk %, SL/TP policy, trailing logic).
  • Data requirements: The dataframe must include an EMA column named ema_{trend_ema_span} (e.g., ema_50) and an ATR series used by the base bot.

Algorithm & Entry Logic¶

Let:

  • ema_prev = EMA value on the previous (closed) bar
  • prev_close = prior bar’s close
  • entry_open = current bar open (where your order will execute)
  • atr_prev = prior bar’s ATR (from the base helper)

1) Crossback into trend

  • Long: prev_close ≤ ema_prev and entry_open > ema_prev → buy
  • Short: prev_close ≥ ema_prev and entry_open < ema_prev → sell

This insists the trend filter is actually crossed and that the very next open is on the trend side—reducing whipsaw from intrabar pokes.

2) EMA-±(k × ATR) breakout
Compute a volatility buffer: threshold = breakout_atr_mult × atr_prev.

  • Long: entry_open > ema_prev + threshold → buy
  • Short: entry_open < ema_prev − threshold → sell

If neither rule fires, the bot stays flat for that bar.


Key Parameters¶

Param Default What it does
trend_ema_span 50 Length of the EMA trend filter (expects a column named ema_50, etc.).
breakout_atr_mult 1.5 Volatility buffer (in ATRs) required for the EMA-distance breakout entries.

Tuning tips: Smaller breakout_atr_mult captures more breakouts (higher turnover, more noise). Larger values trade less but target stronger impulses. Shorter trend_ema_span reacts faster (more trades), longer spans are steadier.


Notes on Exits & Risk¶

This bot only decides side/entry. Stops, trailing, take-profits, and position sizing are handled by the shared base (BaseStrategyBot) through the configured ExitStrategy—so you can mix and match exits (e.g., ATR-trailing) without rewriting entry logic. :contentReference[oaicite:1]{index=1}

Assests Included in Portfolio¶

Assest name Notebook symbol (example) Comment
Gold GC=F COMEX Gold
Silver SI=F COMEX Silver
U.S. Bonds ZB=F 30-Year Treasury Bond
Crude Oil CL=F NYMEX WTI
Soybeans ZS=F CBOT Soybeans
Deutsche Mark 6E=F Euro FX as successor to DEM
British Pound 6B=F British Pound FX
Live Cattle LE=F CME Live Cattle

Setup¶

In [1]:
# jump to repo root (fallback: parent if in notebooks/)
ROOT = !git rev-parse --show-toplevel 2>/dev/null
%cd {ROOT[0] if ROOT else '..'}
/home/dennis/Algo-Trading-Stack
In [2]:
!./setup/fetch_sample_portfolio_futures_data.sh
========== Last 10 years ==========
⏭️  Gold: already exists, skipping.
⏭️  Silver: already exists, skipping.
⏭️  Crude_Oil: already exists, skipping.
⏭️  Soybeans: already exists, skipping.
⏭️  Sugar: already exists, skipping.
⏭️  US_Treasury_Bonds: already exists, skipping.
⏭️  Euro: already exists, skipping.
⏭️  British_Pound: already exists, skipping.
⏭️  Live_Cattle: already exists, skipping.
========== Last 20 years ==========
⏭️  Gold: already exists, skipping.
⏭️  Silver: already exists, skipping.
⏭️  Crude_Oil: already exists, skipping.
⏭️  Soybeans: already exists, skipping.
⏭️  Sugar: already exists, skipping.
⏭️  US_Treasury_Bonds: already exists, skipping.
⏭️  Euro: already exists, skipping.
⏭️  British_Pound: already exists, skipping.
⏭️  Live_Cattle: already exists, skipping.
========== 2000 to 2015 ==========
⏭️  Gold: already exists, skipping.
⏭️  Silver: already exists, skipping.
⏭️  Crude_Oil: already exists, skipping.
⏭️  Soybeans: already exists, skipping.
⏭️  Sugar: already exists, skipping.
⏭️  US_Treasury_Bonds: already exists, skipping.
⏭️  Euro: already exists, skipping.
⏭️  British_Pound: already exists, skipping.
⏭️  Live_Cattle: already exists, skipping.
✅ All downloads complete.
In [3]:
# Enable autoreload (useful while iterating), and hook Qt into Jupyter
%load_ext autoreload
%autoreload 2
%gui qt

Project root & imports¶

Set the project root if your notebook isn't at the repo root. By default, we assume the notebook lives in the root (where classes/ and bots/ exist).

In [4]:
import sys, os, pathlib
PROJECT_ROOT = os.path.abspath('.') 
if PROJECT_ROOT not in sys.path:
    sys.path.insert(0, PROJECT_ROOT)
print('PROJECT_ROOT =', PROJECT_ROOT)

os.chdir(PROJECT_ROOT)
print("Current working directory:", os.getcwd())
PROJECT_ROOT = /home/dennis/Algo-Trading-Stack
Current working directory: /home/dennis/Algo-Trading-Stack
In [5]:
from PyQt5 import QtWidgets
import gc

from classes.Backtester_Engine import BacktesterEngine
from classes.Trading_Environment import TradingEnvironment
from classes.ui_main_window import launch_gui

# Bots
from bots.coin_flip_bot.coin_flip_bot import CoinFlipBot
from bots.trend_following_bot.trend_following_bot import TrendFollowingBot

# Exits
from bots.exit_strategies import TrailingATRExit, FixedRatioExit

Build the exit strategy¶

In [6]:
exit_strategy = TrailingATRExit(atr_multiple=3.0)

Build the bot¶

In [7]:
bot = TrendFollowingBot(
    exit_strategy=exit_strategy,
    base_risk_percent=0.01,
    enforce_sessions=False,
    flatten_before_maintenance=True,
    enable_online_learning=False
)

Initialize engine and environment¶

In [8]:
config_path = "backtest_configs/backtest_config_10_yrs.yaml"

api = BacktesterEngine(config_path=config_path)
api.connect()

env = TradingEnvironment()
env.set_api(api)
env.set_bot(bot)

# Initial indicator compute happens inside TradingEnvironment on connect.
print('Assets:', env.get_asset_list())
Assets: ['6B=F', 'CL=F', '6E=F', 'GC=F', 'LE=F', 'SI=F', 'ZS=F', 'ZB=F']

Launch GUI and Run Backtest¶

This starts the backtest control panel and charting UI. You can open charts, start/pause/restart, and view statistics. If the window doesn't appear from within Jupyter, ensure you ran %gui qt above, or run this notebook locally (VS Code, JupyterLab).

In [9]:
launch_gui(env, api)
[FORCED LIQUIDATION] 6B=F: current qty=9, submitting side=sell, qty=9
[FORCED LIQUIDATION] LE=F: current qty=4, submitting side=sell, qty=4
[FORCED LIQUIDATION] GC=F: current qty=1, submitting side=sell, qty=1
[FORCED LIQUIDATION] SI=F: current qty=1, submitting side=sell, qty=1
[FORCED LIQUIDATION] ZB=F: current qty=4, submitting side=sell, qty=4
[FORCED LIQUIDATION] ZS=F: current qty=-7, submitting side=buy, qty=7
[FORCED LIQUIDATION] CL=F: current qty=-2, submitting side=buy, qty=2

Backtesting Results¶

Show Statistics¶

In [10]:
# Minimal: pull stats from the running/backtested engine and show them inline

import pandas as pd
from IPython.display import display

stats = api.get_stats_snapshot()   # live snapshot; safe to call anytime

# Portfolio (one row)
display(pd.DataFrame([{
    "Initial Cash":   stats["portfolio"].get("initial_cash", 0.0),
    "Final Equity":   stats["portfolio"].get("total_equity", 0.0),
    "Used Margin":    stats["portfolio"].get("used_margin", 0.0),
    "Max Drawdown %": 100.0 * stats["portfolio"].get("max_drawdown", 0.0),
}]))

# Per-asset table
display(pd.DataFrame.from_dict(stats["per_asset"], orient="index").reset_index().rename(columns={"index":"Symbol"}))
Initial Cash Final Equity Used Margin Max Drawdown %
0 1000000.0 1.619940e+06 0.0 13.791668
Symbol trades wins losses long_trades short_trades win_rate avg_win avg_loss profit_factor expectancy commission_total fee_total max_drawdown
0 6B=F 90 41 49 47 43 0.455556 9866.920732 -7048.979591 1.171233 657.152778 2400.0 270.0 2.700004e+15
1 CL=F 73 30 43 39 34 0.410959 10094.333334 -6568.139534 1.072230 279.452055 492.0 219.0 2.110000e+15
2 6E=F 89 33 56 44 45 0.370787 10292.803029 -7737.946428 0.783852 -1052.387641 1568.0 267.0 8.750561e+13
3 GC=F 107 40 67 55 52 0.373832 16899.750005 -6687.910449 1.508603 2129.906543 948.0 321.0 3.158911e+01
4 LE=F 94 43 51 56 38 0.457447 13512.558142 -8192.352941 1.390680 1736.489363 2032.0 282.0 9.900073e+14
5 SI=F 131 50 81 67 64 0.381679 13322.500003 -6054.012346 1.358399 1341.603054 1180.0 393.0 1.725007e+01
6 ZS=F 82 33 49 41 41 0.402439 14331.060605 -7618.877550 1.266792 1214.634146 1504.0 246.0 1.250000e+15
7 ZB=F 77 26 51 38 39 0.337662 14426.682690 -7730.085783 0.951449 -248.579546 928.0 231.0 1.571569e+01

Show Equity Curve¶

In [11]:
# Assuming `s` is the equity Series you already built
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter

# Times + equity (portfolio). Safe to call anytime; uses the engine's live history.
times, equity = api.get_equity_series()   # None -> portfolio; pass a symbol for per-asset

n = min(len(times), len(equity))
if n == 0:
    print("No equity data available yet.")
else:
    s = pd.Series(equity[:n], index=pd.to_datetime(times[:n])).dropna()

    # (Optional) smooth gaps like weekends/holidays:
    s = s.resample("h").last().ffill()

    fig, ax = plt.subplots(figsize=(10, 4))
    ax.plot(s.index, s.values)
    ax.set_title("Portfolio Equity")
    ax.set_xlabel("Time"); ax.set_ylabel("Equity ($)")
    ax.grid(True)
    
    # Turn off scientific notation/offset and format with commas
    ax.ticklabel_format(axis='y', style='plain', useOffset=False)
    ax.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: f'${x:,.0f}'))
    
    fig.autofmt_xdate()
    plt.show()
No description has been provided for this image

But Wait! We can do better!¶

Adding Intelligence to the Exit: PPO-Selected Trailing Stops¶

The first run used a fixed 3× ATR trailing stop—faithful to the Basso demo and great for illustrating the importance of risk management. Next, we’ll upgrade the exit with a small dose of machine learning: a PPO-based policy that selects the ATR multiple dynamically (e.g., choose 1×, 2×, 3×, or 4× ATR) based on recent market context.

Why this can help¶

  • Regime-aware stops: Quiet, mean-reverting markets often benefit from tighter stops; volatile/trending regimes often need looser stops to avoid whipsaw.
  • More consistent expectancy: By adjusting the distance intelligently, the exit aims to reduce avoidable stop-outs without choking off winners.
  • No look-ahead, still disciplined: The policy only sees previously closed-bar features; entries/exits remain rule-based and reproducible.

How it works here¶

  • Training data: We generated offline data by scanning several ATR multiples and recording which one would have performed best at each eligible entry.
  • Features (prev bar only): ATR, RSI(14), EMA(21), Close, and a position flag (+1 long / −1 short).
  • Model: A PPO classifier maps features → a discrete ATR multiple ({1,2,3,4} by default).
  • Execution: At entry and on each bar while trailing, the policy proposes K×ATR. The stop is ratcheted forward only when price has moved favorably past entry (never loosens).
  • Safety: If a model is missing for a symbol (or SB3 isn’t available), we fall back to 3× ATR so the run remains consistent.

What to expect¶

  • **Similar win rate, improved *profit factor*** in persistent regimes (fewer “too-tight” stop-outs).
  • Smoother per-asset equity when trend strength/volatility shifts.
  • Still Basso-style: random entries, disciplined exits—now context-sensitive.

Imports¶

In [12]:
from PyQt5 import QtWidgets
import gc

from classes.Backtester_Engine import BacktesterEngine
from classes.Trading_Environment import TradingEnvironment
from classes.ui_main_window import launch_gui

# Bots
from bots.coin_flip_bot.coin_flip_bot import CoinFlipBot
from bots.trend_following_bot.trend_following_bot import TrendFollowingBot

# Exits
from bots.exit_strategies import TrailingATRExit, FixedRatioExit, RLTrailingATRExit

Generate ML training data¶

In [13]:
!PYTHONPATH=. python3 bots/generate_ML_SL_Training_data.py \
  --config bots/configs/ml_sl_config.yaml \
  --output-dir bots/data/yahoo_finance/training_data
Processing 6B=F (yahoo_finance/data/Futures/British_Pound/1Day_timeframe/british_pound_2000-2015.csv)... range [100, 3792)
6B=F: 100%|################################| 3692/3692 [00:26<00:00, 141.07it/s]
Saved to bots/data/yahoo_finance/training_data/rl_stop_loss_training_6B=F.csv
Processing CL=F (yahoo_finance/data/Futures/Crude_Oil/1Day_timeframe/crude_oil_2000-2015.csv)... range [100, 3792)
CL=F: 100%|################################| 3692/3692 [00:29<00:00, 125.56it/s]
Saved to bots/data/yahoo_finance/training_data/rl_stop_loss_training_CL=F.csv
Processing 6E=F (yahoo_finance/data/Futures/Euro/1Day_timeframe/euro_2000-2015.csv)... range [100, 3792)
6E=F: 100%|################################| 3692/3692 [00:35<00:00, 103.82it/s]
Saved to bots/data/yahoo_finance/training_data/rl_stop_loss_training_6E=F.csv
Processing GC=F (yahoo_finance/data/Futures/Gold/1Day_timeframe/gold_2000-2015.csv)... range [100, 3792)
GC=F: 100%|#################################| 3692/3692 [00:39<00:00, 93.43it/s]
Saved to bots/data/yahoo_finance/training_data/rl_stop_loss_training_GC=F.csv
Processing LE=F (yahoo_finance/data/Futures/Live_Cattle/1Day_timeframe/live_cattle_2000-2015.csv)... range [100, 3792)
LE=F: 100%|################################| 3692/3692 [00:20<00:00, 183.65it/s]
Saved to bots/data/yahoo_finance/training_data/rl_stop_loss_training_LE=F.csv
Processing SI=F (yahoo_finance/data/Futures/Silver/1Day_timeframe/silver_2000-2015.csv)... range [100, 3792)
SI=F: 100%|################################| 3692/3692 [00:28<00:00, 130.80it/s]
Saved to bots/data/yahoo_finance/training_data/rl_stop_loss_training_SI=F.csv
Processing ZS=F (yahoo_finance/data/Futures/Soybeans/1Day_timeframe/soybeans_2000-2015.csv)... range [100, 3792)
ZS=F: 100%|################################| 3692/3692 [00:22<00:00, 162.75it/s]
Saved to bots/data/yahoo_finance/training_data/rl_stop_loss_training_ZS=F.csv
Processing ZB=F (yahoo_finance/data/Futures/US_Treasury_Bonds/1Day_timeframe/us_treasury_bonds_2000-2015.csv)... range [100, 3792)
ZB=F: 100%|################################| 3692/3692 [00:29<00:00, 126.07it/s]
Saved to bots/data/yahoo_finance/training_data/rl_stop_loss_training_ZB=F.csv

Train PPO stop‑loss selector¶

In [14]:
!PYTHONPATH=. python3 bots/train_ppo_stop_selector.py \
  --input_dir bots/data/yahoo_finance/training_data \
  --output_dir bots/models/PPO_Trailing_Stop_Loss \
  --total_timesteps 300000
[TRAIN] 6B=F — rows: 7326, actions: [1.0, 2.0, 3.0, 4.0], envs: 8
Using cpu device
------------------------------
| time/              |       |
|    fps             | 21222 |
|    iterations      | 1     |
|    time_elapsed    | 0     |
|    total_timesteps | 8192  |
------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19779       |
|    iterations           | 2           |
|    time_elapsed         | 0           |
|    total_timesteps      | 16384       |
| train/                  |             |
|    approx_kl            | 0.013843633 |
|    clip_fraction        | 0.0984      |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.38       |
|    explained_variance   | -0.0171     |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0313      |
|    n_updates            | 6           |
|    policy_gradient_loss | -0.0707     |
|    value_loss           | 0.396       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19329       |
|    iterations           | 3           |
|    time_elapsed         | 1           |
|    total_timesteps      | 24576       |
| train/                  |             |
|    approx_kl            | 0.017927568 |
|    clip_fraction        | 0.107       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.34       |
|    explained_variance   | -0.0178     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0203     |
|    n_updates            | 12          |
|    policy_gradient_loss | -0.0817     |
|    value_loss           | 0.296       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19127       |
|    iterations           | 4           |
|    time_elapsed         | 1           |
|    total_timesteps      | 32768       |
| train/                  |             |
|    approx_kl            | 0.025181714 |
|    clip_fraction        | 0.15        |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.24       |
|    explained_variance   | -0.0181     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0511     |
|    n_updates            | 18          |
|    policy_gradient_loss | -0.0991     |
|    value_loss           | 0.26        |
-----------------------------------------
----------------------------------------
| time/                   |            |
|    fps                  | 18948      |
|    iterations           | 5          |
|    time_elapsed         | 2          |
|    total_timesteps      | 40960      |
| train/                  |            |
|    approx_kl            | 0.02499305 |
|    clip_fraction        | 0.116      |
|    clip_range           | 0.2        |
|    entropy_loss         | -1.08      |
|    explained_variance   | -0.0163    |
|    learning_rate        | 0.0003     |
|    loss                 | -0.05      |
|    n_updates            | 24         |
|    policy_gradient_loss | -0.0975    |
|    value_loss           | 0.256      |
----------------------------------------
----------------------------------------
| time/                   |            |
|    fps                  | 18829      |
|    iterations           | 6          |
|    time_elapsed         | 2          |
|    total_timesteps      | 49152      |
| train/                  |            |
|    approx_kl            | 0.02237932 |
|    clip_fraction        | 0.124      |
|    clip_range           | 0.2        |
|    entropy_loss         | -0.862     |
|    explained_variance   | -0.00746   |
|    learning_rate        | 0.0003     |
|    loss                 | -0.0206    |
|    n_updates            | 30         |
|    policy_gradient_loss | -0.0827    |
|    value_loss           | 0.233      |
----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 18801       |
|    iterations           | 7           |
|    time_elapsed         | 3           |
|    total_timesteps      | 57344       |
| train/                  |             |
|    approx_kl            | 0.016101798 |
|    clip_fraction        | 0.0856      |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.649      |
|    explained_variance   | -0.00338    |
|    learning_rate        | 0.0003      |
|    loss                 | -0.00407    |
|    n_updates            | 36          |
|    policy_gradient_loss | -0.0641     |
|    value_loss           | 0.191       |
-----------------------------------------
----------------------------------------
| rollout/                |            |
|    ep_len_mean          | 7.33e+03   |
|    ep_rew_mean          | 3.95e+03   |
| time/                   |            |
|    fps                  | 18802      |
|    iterations           | 8          |
|    time_elapsed         | 3          |
|    total_timesteps      | 65536      |
| train/                  |            |
|    approx_kl            | 0.01037625 |
|    clip_fraction        | 0.0673     |
|    clip_range           | 0.2        |
|    entropy_loss         | -0.469     |
|    explained_variance   | 0.00516    |
|    learning_rate        | 0.0003     |
|    loss                 | 0.0137     |
|    n_updates            | 42         |
|    policy_gradient_loss | -0.0459    |
|    value_loss           | 0.161      |
----------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 3.95e+03     |
| time/                   |              |
|    fps                  | 18815        |
|    iterations           | 9            |
|    time_elapsed         | 3            |
|    total_timesteps      | 73728        |
| train/                  |              |
|    approx_kl            | 0.0057062125 |
|    clip_fraction        | 0.0388       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.34        |
|    explained_variance   | 0.00639      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0165       |
|    n_updates            | 48           |
|    policy_gradient_loss | -0.0324      |
|    value_loss           | 0.133        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 3.95e+03     |
| time/                   |              |
|    fps                  | 18812        |
|    iterations           | 10           |
|    time_elapsed         | 4            |
|    total_timesteps      | 81920        |
| train/                  |              |
|    approx_kl            | 0.0030949104 |
|    clip_fraction        | 0.024        |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.252       |
|    explained_variance   | 0.0131       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0226       |
|    n_updates            | 54           |
|    policy_gradient_loss | -0.0216      |
|    value_loss           | 0.112        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 3.95e+03     |
| time/                   |              |
|    fps                  | 18820        |
|    iterations           | 11           |
|    time_elapsed         | 4            |
|    total_timesteps      | 90112        |
| train/                  |              |
|    approx_kl            | 0.0019354754 |
|    clip_fraction        | 0.013        |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.188       |
|    explained_variance   | 0.00992      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0237       |
|    n_updates            | 60           |
|    policy_gradient_loss | -0.0152      |
|    value_loss           | 0.0945       |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 3.95e+03     |
| time/                   |              |
|    fps                  | 18800        |
|    iterations           | 12           |
|    time_elapsed         | 5            |
|    total_timesteps      | 98304        |
| train/                  |              |
|    approx_kl            | 0.0014332188 |
|    clip_fraction        | 0.0111       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.14        |
|    explained_variance   | 0.0165       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0229       |
|    n_updates            | 66           |
|    policy_gradient_loss | -0.0122      |
|    value_loss           | 0.0836       |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 3.95e+03     |
| time/                   |              |
|    fps                  | 18790        |
|    iterations           | 13           |
|    time_elapsed         | 5            |
|    total_timesteps      | 106496       |
| train/                  |              |
|    approx_kl            | 0.0010673881 |
|    clip_fraction        | 0.00712      |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.104       |
|    explained_variance   | 0.0138       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0282       |
|    n_updates            | 72           |
|    policy_gradient_loss | -0.00886     |
|    value_loss           | 0.0846       |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 3.95e+03     |
| time/                   |              |
|    fps                  | 18797        |
|    iterations           | 14           |
|    time_elapsed         | 6            |
|    total_timesteps      | 114688       |
| train/                  |              |
|    approx_kl            | 0.0006308706 |
|    clip_fraction        | 0.0049       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0765      |
|    explained_variance   | 0.013        |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0289       |
|    n_updates            | 78           |
|    policy_gradient_loss | -0.00621     |
|    value_loss           | 0.0761       |
------------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.33e+03    |
|    ep_rew_mean          | 5.26e+03    |
| time/                   |             |
|    fps                  | 18757       |
|    iterations           | 15          |
|    time_elapsed         | 6           |
|    total_timesteps      | 122880      |
| train/                  |             |
|    approx_kl            | 0.000340859 |
|    clip_fraction        | 0.00212     |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.0597     |
|    explained_variance   | 0.0157      |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0282      |
|    n_updates            | 84          |
|    policy_gradient_loss | -0.0043     |
|    value_loss           | 0.0708      |
-----------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.26e+03      |
| time/                   |               |
|    fps                  | 18745         |
|    iterations           | 16            |
|    time_elapsed         | 6             |
|    total_timesteps      | 131072        |
| train/                  |               |
|    approx_kl            | 0.00017984342 |
|    clip_fraction        | 0.00061       |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0472       |
|    explained_variance   | 0.0146        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0319        |
|    n_updates            | 90            |
|    policy_gradient_loss | -0.00285      |
|    value_loss           | 0.0704        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.26e+03      |
| time/                   |               |
|    fps                  | 18729         |
|    iterations           | 17            |
|    time_elapsed         | 7             |
|    total_timesteps      | 139264        |
| train/                  |               |
|    approx_kl            | 0.00011668514 |
|    clip_fraction        | 0.000142      |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0383       |
|    explained_variance   | 0.0156        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0291        |
|    n_updates            | 96            |
|    policy_gradient_loss | -0.00209      |
|    value_loss           | 0.0699        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 5.26e+03     |
| time/                   |              |
|    fps                  | 18703        |
|    iterations           | 18           |
|    time_elapsed         | 7            |
|    total_timesteps      | 147456       |
| train/                  |              |
|    approx_kl            | 7.765376e-05 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0318      |
|    explained_variance   | 0.0168       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0312       |
|    n_updates            | 102          |
|    policy_gradient_loss | -0.00156     |
|    value_loss           | 0.0711       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.26e+03      |
| time/                   |               |
|    fps                  | 18638         |
|    iterations           | 19            |
|    time_elapsed         | 8             |
|    total_timesteps      | 155648        |
| train/                  |               |
|    approx_kl            | 3.0487085e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0271       |
|    explained_variance   | 0.0203        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0329        |
|    n_updates            | 108           |
|    policy_gradient_loss | -0.000821     |
|    value_loss           | 0.0673        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.26e+03      |
| time/                   |               |
|    fps                  | 18620         |
|    iterations           | 20            |
|    time_elapsed         | 8             |
|    total_timesteps      | 163840        |
| train/                  |               |
|    approx_kl            | 2.7386559e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0242       |
|    explained_variance   | 0.0185        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0301        |
|    n_updates            | 114           |
|    policy_gradient_loss | -0.000805     |
|    value_loss           | 0.0633        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.26e+03      |
| time/                   |               |
|    fps                  | 18621         |
|    iterations           | 21            |
|    time_elapsed         | 9             |
|    total_timesteps      | 172032        |
| train/                  |               |
|    approx_kl            | 3.1381976e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0206       |
|    explained_variance   | 0.017         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0305        |
|    n_updates            | 120           |
|    policy_gradient_loss | -0.000866     |
|    value_loss           | 0.0661        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.76e+03      |
| time/                   |               |
|    fps                  | 18618         |
|    iterations           | 22            |
|    time_elapsed         | 9             |
|    total_timesteps      | 180224        |
| train/                  |               |
|    approx_kl            | 1.7015293e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0187       |
|    explained_variance   | 0.0239        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0331        |
|    n_updates            | 126           |
|    policy_gradient_loss | -0.000542     |
|    value_loss           | 0.0674        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 5.76e+03     |
| time/                   |              |
|    fps                  | 18612        |
|    iterations           | 23           |
|    time_elapsed         | 10           |
|    total_timesteps      | 188416       |
| train/                  |              |
|    approx_kl            | 8.737858e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0167      |
|    explained_variance   | 0.0223       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0348       |
|    n_updates            | 132          |
|    policy_gradient_loss | -0.000329    |
|    value_loss           | 0.0712       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.76e+03      |
| time/                   |               |
|    fps                  | 18622         |
|    iterations           | 24            |
|    time_elapsed         | 10            |
|    total_timesteps      | 196608        |
| train/                  |               |
|    approx_kl            | 9.8511955e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0153       |
|    explained_variance   | 0.0209        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0307        |
|    n_updates            | 138           |
|    policy_gradient_loss | -0.000398     |
|    value_loss           | 0.0638        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.76e+03      |
| time/                   |               |
|    fps                  | 18611         |
|    iterations           | 25            |
|    time_elapsed         | 11            |
|    total_timesteps      | 204800        |
| train/                  |               |
|    approx_kl            | 5.1805473e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0142       |
|    explained_variance   | 0.0157        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0307        |
|    n_updates            | 144           |
|    policy_gradient_loss | -0.000245     |
|    value_loss           | 0.0644        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 5.76e+03     |
| time/                   |              |
|    fps                  | 18599        |
|    iterations           | 26           |
|    time_elapsed         | 11           |
|    total_timesteps      | 212992       |
| train/                  |              |
|    approx_kl            | 8.469215e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0135      |
|    explained_variance   | 0.0251       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0397       |
|    n_updates            | 150          |
|    policy_gradient_loss | -0.000347    |
|    value_loss           | 0.074        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 5.76e+03     |
| time/                   |              |
|    fps                  | 18614        |
|    iterations           | 27           |
|    time_elapsed         | 11           |
|    total_timesteps      | 221184       |
| train/                  |              |
|    approx_kl            | 4.426707e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0117      |
|    explained_variance   | 0.0222       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0281       |
|    n_updates            | 156          |
|    policy_gradient_loss | -0.000209    |
|    value_loss           | 0.0592       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.76e+03      |
| time/                   |               |
|    fps                  | 18627         |
|    iterations           | 28            |
|    time_elapsed         | 12            |
|    total_timesteps      | 229376        |
| train/                  |               |
|    approx_kl            | 3.5331614e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0116       |
|    explained_variance   | 0.0213        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0349        |
|    n_updates            | 162           |
|    policy_gradient_loss | -0.000168     |
|    value_loss           | 0.0667        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 6.02e+03     |
| time/                   |              |
|    fps                  | 18616        |
|    iterations           | 29           |
|    time_elapsed         | 12           |
|    total_timesteps      | 237568       |
| train/                  |              |
|    approx_kl            | 2.787805e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0106      |
|    explained_variance   | 0.0187       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0327       |
|    n_updates            | 168          |
|    policy_gradient_loss | -0.000151    |
|    value_loss           | 0.0667       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6.02e+03      |
| time/                   |               |
|    fps                  | 18626         |
|    iterations           | 30            |
|    time_elapsed         | 13            |
|    total_timesteps      | 245760        |
| train/                  |               |
|    approx_kl            | 3.0290394e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00984      |
|    explained_variance   | 0.0207        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0329        |
|    n_updates            | 174           |
|    policy_gradient_loss | -0.00017      |
|    value_loss           | 0.0644        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 6.02e+03     |
| time/                   |              |
|    fps                  | 18640        |
|    iterations           | 31           |
|    time_elapsed         | 13           |
|    total_timesteps      | 253952       |
| train/                  |              |
|    approx_kl            | 3.381596e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.00949     |
|    explained_variance   | 0.0277       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0332       |
|    n_updates            | 180          |
|    policy_gradient_loss | -0.000176    |
|    value_loss           | 0.0684       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6.02e+03      |
| time/                   |               |
|    fps                  | 18652         |
|    iterations           | 32            |
|    time_elapsed         | 14            |
|    total_timesteps      | 262144        |
| train/                  |               |
|    approx_kl            | 2.2856475e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00879      |
|    explained_variance   | 0.0234        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0344        |
|    n_updates            | 186           |
|    policy_gradient_loss | -0.000137     |
|    value_loss           | 0.0658        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6.02e+03      |
| time/                   |               |
|    fps                  | 18662         |
|    iterations           | 33            |
|    time_elapsed         | 14            |
|    total_timesteps      | 270336        |
| train/                  |               |
|    approx_kl            | 1.4155812e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00821      |
|    explained_variance   | 0.0255        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0358        |
|    n_updates            | 192           |
|    policy_gradient_loss | -9.13e-05     |
|    value_loss           | 0.0688        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6.02e+03      |
| time/                   |               |
|    fps                  | 18674         |
|    iterations           | 34            |
|    time_elapsed         | 14            |
|    total_timesteps      | 278528        |
| train/                  |               |
|    approx_kl            | 1.2561795e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00768      |
|    explained_variance   | 0.0206        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0298        |
|    n_updates            | 198           |
|    policy_gradient_loss | -7.76e-05     |
|    value_loss           | 0.0623        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6.02e+03      |
| time/                   |               |
|    fps                  | 18683         |
|    iterations           | 35            |
|    time_elapsed         | 15            |
|    total_timesteps      | 286720        |
| train/                  |               |
|    approx_kl            | 2.1879678e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00754      |
|    explained_variance   | 0.0184        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0335        |
|    n_updates            | 204           |
|    policy_gradient_loss | -0.000133     |
|    value_loss           | 0.0637        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6.18e+03      |
| time/                   |               |
|    fps                  | 18690         |
|    iterations           | 36            |
|    time_elapsed         | 15            |
|    total_timesteps      | 294912        |
| train/                  |               |
|    approx_kl            | 3.5027188e-07 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00718      |
|    explained_variance   | 0.0229        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0287        |
|    n_updates            | 210           |
|    policy_gradient_loss | -3.23e-05     |
|    value_loss           | 0.0613        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 6.18e+03     |
| time/                   |              |
|    fps                  | 18698        |
|    iterations           | 37           |
|    time_elapsed         | 16           |
|    total_timesteps      | 303104       |
| train/                  |              |
|    approx_kl            | 2.319066e-07 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.007       |
|    explained_variance   | 0.0242       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0347       |
|    n_updates            | 216          |
|    policy_gradient_loss | -1.94e-05    |
|    value_loss           | 0.0662       |
------------------------------------------
[SAVED] bots/models/PPO_Trailing_Stop_Loss/ppo_stop_loss_selector_rl_stop_loss_training_6B=F.zip

[TRAIN] 6E=F — rows: 7380, actions: [1.0, 2.0, 3.0, 4.0], envs: 8
Using cpu device
------------------------------
| time/              |       |
|    fps             | 21537 |
|    iterations      | 1     |
|    time_elapsed    | 0     |
|    total_timesteps | 8192  |
------------------------------
------------------------------------------
| time/                   |              |
|    fps                  | 20509        |
|    iterations           | 2            |
|    time_elapsed         | 0            |
|    total_timesteps      | 16384        |
| train/                  |              |
|    approx_kl            | 0.0138778575 |
|    clip_fraction        | 0.0997       |
|    clip_range           | 0.2          |
|    entropy_loss         | -1.38        |
|    explained_variance   | -0.0242      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0373       |
|    n_updates            | 6            |
|    policy_gradient_loss | -0.0671      |
|    value_loss           | 0.4          |
------------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 20250       |
|    iterations           | 3           |
|    time_elapsed         | 1           |
|    total_timesteps      | 24576       |
| train/                  |             |
|    approx_kl            | 0.017829828 |
|    clip_fraction        | 0.107       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.34       |
|    explained_variance   | -0.0131     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0145     |
|    n_updates            | 12          |
|    policy_gradient_loss | -0.0765     |
|    value_loss           | 0.29        |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 20059       |
|    iterations           | 4           |
|    time_elapsed         | 1           |
|    total_timesteps      | 32768       |
| train/                  |             |
|    approx_kl            | 0.025589835 |
|    clip_fraction        | 0.151       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.24       |
|    explained_variance   | -0.013      |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0431     |
|    n_updates            | 18          |
|    policy_gradient_loss | -0.093      |
|    value_loss           | 0.255       |
-----------------------------------------
---------------------------------------
| time/                   |           |
|    fps                  | 19916     |
|    iterations           | 5         |
|    time_elapsed         | 2         |
|    total_timesteps      | 40960     |
| train/                  |           |
|    approx_kl            | 0.0245471 |
|    clip_fraction        | 0.11      |
|    clip_range           | 0.2       |
|    entropy_loss         | -1.08     |
|    explained_variance   | -0.0151   |
|    learning_rate        | 0.0003    |
|    loss                 | -0.0362   |
|    n_updates            | 24        |
|    policy_gradient_loss | -0.0896   |
|    value_loss           | 0.256     |
---------------------------------------
----------------------------------------
| time/                   |            |
|    fps                  | 19816      |
|    iterations           | 6          |
|    time_elapsed         | 2          |
|    total_timesteps      | 49152      |
| train/                  |            |
|    approx_kl            | 0.02243957 |
|    clip_fraction        | 0.124      |
|    clip_range           | 0.2        |
|    entropy_loss         | -0.863     |
|    explained_variance   | -0.00603   |
|    learning_rate        | 0.0003     |
|    loss                 | -0.0089    |
|    n_updates            | 30         |
|    policy_gradient_loss | -0.0766    |
|    value_loss           | 0.238      |
----------------------------------------
----------------------------------------
| time/                   |            |
|    fps                  | 19776      |
|    iterations           | 7          |
|    time_elapsed         | 2          |
|    total_timesteps      | 57344      |
| train/                  |            |
|    approx_kl            | 0.01618424 |
|    clip_fraction        | 0.0856     |
|    clip_range           | 0.2        |
|    entropy_loss         | -0.649     |
|    explained_variance   | -0.00363   |
|    learning_rate        | 0.0003     |
|    loss                 | 0.015      |
|    n_updates            | 36         |
|    policy_gradient_loss | -0.0581    |
|    value_loss           | 0.206      |
----------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.38e+03    |
|    ep_rew_mean          | 3.86e+03    |
| time/                   |             |
|    fps                  | 19738       |
|    iterations           | 8           |
|    time_elapsed         | 3           |
|    total_timesteps      | 65536       |
| train/                  |             |
|    approx_kl            | 0.010122934 |
|    clip_fraction        | 0.068       |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.469      |
|    explained_variance   | 0.00299     |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0258      |
|    n_updates            | 42          |
|    policy_gradient_loss | -0.0417     |
|    value_loss           | 0.176       |
-----------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.38e+03     |
|    ep_rew_mean          | 3.86e+03     |
| time/                   |              |
|    fps                  | 19631        |
|    iterations           | 9            |
|    time_elapsed         | 3            |
|    total_timesteps      | 73728        |
| train/                  |              |
|    approx_kl            | 0.0055768033 |
|    clip_fraction        | 0.0392       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.343       |
|    explained_variance   | 0.00677      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0344       |
|    n_updates            | 48           |
|    policy_gradient_loss | -0.0282      |
|    value_loss           | 0.154        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.38e+03     |
|    ep_rew_mean          | 3.86e+03     |
| time/                   |              |
|    fps                  | 19505        |
|    iterations           | 10           |
|    time_elapsed         | 4            |
|    total_timesteps      | 81920        |
| train/                  |              |
|    approx_kl            | 0.0030899993 |
|    clip_fraction        | 0.0227       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.253       |
|    explained_variance   | 0.00657      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0362       |
|    n_updates            | 54           |
|    policy_gradient_loss | -0.0184      |
|    value_loss           | 0.133        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.38e+03     |
|    ep_rew_mean          | 3.86e+03     |
| time/                   |              |
|    fps                  | 19356        |
|    iterations           | 11           |
|    time_elapsed         | 4            |
|    total_timesteps      | 90112        |
| train/                  |              |
|    approx_kl            | 0.0020436402 |
|    clip_fraction        | 0.0143       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.19        |
|    explained_variance   | 0.0111       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0425       |
|    n_updates            | 60           |
|    policy_gradient_loss | -0.0127      |
|    value_loss           | 0.128        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.38e+03     |
|    ep_rew_mean          | 3.86e+03     |
| time/                   |              |
|    fps                  | 19244        |
|    iterations           | 12           |
|    time_elapsed         | 5            |
|    total_timesteps      | 98304        |
| train/                  |              |
|    approx_kl            | 0.0014379448 |
|    clip_fraction        | 0.0104       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.14        |
|    explained_variance   | 0.00464      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0446       |
|    n_updates            | 66           |
|    policy_gradient_loss | -0.0094      |
|    value_loss           | 0.116        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.38e+03     |
|    ep_rew_mean          | 3.86e+03     |
| time/                   |              |
|    fps                  | 19186        |
|    iterations           | 13           |
|    time_elapsed         | 5            |
|    total_timesteps      | 106496       |
| train/                  |              |
|    approx_kl            | 0.0009949196 |
|    clip_fraction        | 0.0072       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.104       |
|    explained_variance   | 0.00665      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0459       |
|    n_updates            | 72           |
|    policy_gradient_loss | -0.00716     |
|    value_loss           | 0.114        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.38e+03     |
|    ep_rew_mean          | 3.86e+03     |
| time/                   |              |
|    fps                  | 19156        |
|    iterations           | 14           |
|    time_elapsed         | 5            |
|    total_timesteps      | 114688       |
| train/                  |              |
|    approx_kl            | 0.0005190867 |
|    clip_fraction        | 0.0036       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0783      |
|    explained_variance   | 0.00889      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0486       |
|    n_updates            | 78           |
|    policy_gradient_loss | -0.00475     |
|    value_loss           | 0.107        |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.1e+03       |
| time/                   |               |
|    fps                  | 19126         |
|    iterations           | 15            |
|    time_elapsed         | 6             |
|    total_timesteps      | 122880        |
| train/                  |               |
|    approx_kl            | 0.00027618528 |
|    clip_fraction        | 0.00157       |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0616       |
|    explained_variance   | 0.0115        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0459        |
|    n_updates            | 84            |
|    policy_gradient_loss | -0.00322      |
|    value_loss           | 0.103         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.1e+03       |
| time/                   |               |
|    fps                  | 19082         |
|    iterations           | 16            |
|    time_elapsed         | 6             |
|    total_timesteps      | 131072        |
| train/                  |               |
|    approx_kl            | 0.00016038428 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0501       |
|    explained_variance   | 0.0155        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0453        |
|    n_updates            | 90            |
|    policy_gradient_loss | -0.0021       |
|    value_loss           | 0.106         |
-------------------------------------------
--------------------------------------------
| rollout/                |                |
|    ep_len_mean          | 7.38e+03       |
|    ep_rew_mean          | 5.1e+03        |
| time/                   |                |
|    fps                  | 19056          |
|    iterations           | 17             |
|    time_elapsed         | 7              |
|    total_timesteps      | 139264         |
| train/                  |                |
|    approx_kl            | 0.000110134395 |
|    clip_fraction        | 0              |
|    clip_range           | 0.2            |
|    entropy_loss         | -0.0416        |
|    explained_variance   | 0.0111         |
|    learning_rate        | 0.0003         |
|    loss                 | 0.0513         |
|    n_updates            | 96             |
|    policy_gradient_loss | -0.00162       |
|    value_loss           | 0.104          |
--------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.38e+03     |
|    ep_rew_mean          | 5.1e+03      |
| time/                   |              |
|    fps                  | 19032        |
|    iterations           | 18           |
|    time_elapsed         | 7            |
|    total_timesteps      | 147456       |
| train/                  |              |
|    approx_kl            | 6.149147e-05 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0351      |
|    explained_variance   | 0.0147       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0522       |
|    n_updates            | 102          |
|    policy_gradient_loss | -0.00108     |
|    value_loss           | 0.105        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.38e+03     |
|    ep_rew_mean          | 5.1e+03      |
| time/                   |              |
|    fps                  | 18987        |
|    iterations           | 19           |
|    time_elapsed         | 8            |
|    total_timesteps      | 155648       |
| train/                  |              |
|    approx_kl            | 2.784554e-05 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0303      |
|    explained_variance   | 0.0166       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0526       |
|    n_updates            | 108          |
|    policy_gradient_loss | -0.00065     |
|    value_loss           | 0.101        |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.1e+03       |
| time/                   |               |
|    fps                  | 18921         |
|    iterations           | 20            |
|    time_elapsed         | 8             |
|    total_timesteps      | 163840        |
| train/                  |               |
|    approx_kl            | 2.4154047e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0271       |
|    explained_variance   | 0.0162        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0506        |
|    n_updates            | 114           |
|    policy_gradient_loss | -0.00059      |
|    value_loss           | 0.102         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.1e+03       |
| time/                   |               |
|    fps                  | 18876         |
|    iterations           | 21            |
|    time_elapsed         | 9             |
|    total_timesteps      | 172032        |
| train/                  |               |
|    approx_kl            | 3.0500298e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0241       |
|    explained_variance   | 0.0172        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0454        |
|    n_updates            | 120           |
|    policy_gradient_loss | -0.00072      |
|    value_loss           | 0.0949        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.57e+03      |
| time/                   |               |
|    fps                  | 18853         |
|    iterations           | 22            |
|    time_elapsed         | 9             |
|    total_timesteps      | 180224        |
| train/                  |               |
|    approx_kl            | 1.3894045e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0219       |
|    explained_variance   | 0.0195        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0495        |
|    n_updates            | 126           |
|    policy_gradient_loss | -0.000397     |
|    value_loss           | 0.0983        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.57e+03      |
| time/                   |               |
|    fps                  | 18830         |
|    iterations           | 23            |
|    time_elapsed         | 10            |
|    total_timesteps      | 188416        |
| train/                  |               |
|    approx_kl            | 1.1776217e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0201       |
|    explained_variance   | 0.0193        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0474        |
|    n_updates            | 132           |
|    policy_gradient_loss | -0.000347     |
|    value_loss           | 0.0988        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.57e+03      |
| time/                   |               |
|    fps                  | 18793         |
|    iterations           | 24            |
|    time_elapsed         | 10            |
|    total_timesteps      | 196608        |
| train/                  |               |
|    approx_kl            | 1.1170021e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0182       |
|    explained_variance   | 0.0223        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0457        |
|    n_updates            | 138           |
|    policy_gradient_loss | -0.00035      |
|    value_loss           | 0.099         |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.38e+03     |
|    ep_rew_mean          | 5.57e+03     |
| time/                   |              |
|    fps                  | 18771        |
|    iterations           | 25           |
|    time_elapsed         | 10           |
|    total_timesteps      | 204800       |
| train/                  |              |
|    approx_kl            | 4.919908e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0165      |
|    explained_variance   | 0.0236       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0485       |
|    n_updates            | 144          |
|    policy_gradient_loss | -0.000194    |
|    value_loss           | 0.0971       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.57e+03      |
| time/                   |               |
|    fps                  | 18762         |
|    iterations           | 26            |
|    time_elapsed         | 11            |
|    total_timesteps      | 212992        |
| train/                  |               |
|    approx_kl            | 4.8175207e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0154       |
|    explained_variance   | 0.027         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0489        |
|    n_updates            | 150           |
|    policy_gradient_loss | -0.000174     |
|    value_loss           | 0.0998        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.57e+03      |
| time/                   |               |
|    fps                  | 18759         |
|    iterations           | 27            |
|    time_elapsed         | 11            |
|    total_timesteps      | 221184        |
| train/                  |               |
|    approx_kl            | 3.2801472e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0145       |
|    explained_variance   | 0.0272        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0476        |
|    n_updates            | 156           |
|    policy_gradient_loss | -0.000144     |
|    value_loss           | 0.0991        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.38e+03     |
|    ep_rew_mean          | 5.57e+03     |
| time/                   |              |
|    fps                  | 18760        |
|    iterations           | 28           |
|    time_elapsed         | 12           |
|    total_timesteps      | 229376       |
| train/                  |              |
|    approx_kl            | 2.847737e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0136      |
|    explained_variance   | 0.0292       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0465       |
|    n_updates            | 162          |
|    policy_gradient_loss | -0.00014     |
|    value_loss           | 0.0966       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.81e+03      |
| time/                   |               |
|    fps                  | 18754         |
|    iterations           | 29            |
|    time_elapsed         | 12            |
|    total_timesteps      | 237568        |
| train/                  |               |
|    approx_kl            | 2.3579269e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0131       |
|    explained_variance   | 0.0311        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0487        |
|    n_updates            | 168           |
|    policy_gradient_loss | -0.000111     |
|    value_loss           | 0.1           |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.38e+03     |
|    ep_rew_mean          | 5.81e+03     |
| time/                   |              |
|    fps                  | 18715        |
|    iterations           | 30           |
|    time_elapsed         | 13           |
|    total_timesteps      | 245760       |
| train/                  |              |
|    approx_kl            | 3.214569e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0123      |
|    explained_variance   | 0.0333       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0471       |
|    n_updates            | 174          |
|    policy_gradient_loss | -0.000142    |
|    value_loss           | 0.0935       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.81e+03      |
| time/                   |               |
|    fps                  | 18691         |
|    iterations           | 31            |
|    time_elapsed         | 13            |
|    total_timesteps      | 253952        |
| train/                  |               |
|    approx_kl            | 3.4514305e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0113       |
|    explained_variance   | 0.0328        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0436        |
|    n_updates            | 180           |
|    policy_gradient_loss | -0.000154     |
|    value_loss           | 0.0939        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.38e+03     |
|    ep_rew_mean          | 5.81e+03     |
| time/                   |              |
|    fps                  | 18696        |
|    iterations           | 32           |
|    time_elapsed         | 14           |
|    total_timesteps      | 262144       |
| train/                  |              |
|    approx_kl            | 2.025692e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.011       |
|    explained_variance   | 0.0387       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0488       |
|    n_updates            | 186          |
|    policy_gradient_loss | -0.000102    |
|    value_loss           | 0.0976       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.81e+03      |
| time/                   |               |
|    fps                  | 18696         |
|    iterations           | 33            |
|    time_elapsed         | 14            |
|    total_timesteps      | 270336        |
| train/                  |               |
|    approx_kl            | 1.1465818e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0102       |
|    explained_variance   | 0.0406        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0463        |
|    n_updates            | 192           |
|    policy_gradient_loss | -7.01e-05     |
|    value_loss           | 0.0956        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.81e+03      |
| time/                   |               |
|    fps                  | 18711         |
|    iterations           | 34            |
|    time_elapsed         | 14            |
|    total_timesteps      | 278528        |
| train/                  |               |
|    approx_kl            | 1.4040852e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00977      |
|    explained_variance   | 0.0461        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0487        |
|    n_updates            | 198           |
|    policy_gradient_loss | -8.27e-05     |
|    value_loss           | 0.0976        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.81e+03      |
| time/                   |               |
|    fps                  | 18726         |
|    iterations           | 35            |
|    time_elapsed         | 15            |
|    total_timesteps      | 286720        |
| train/                  |               |
|    approx_kl            | 2.6844136e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00944      |
|    explained_variance   | 0.0518        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0488        |
|    n_updates            | 204           |
|    policy_gradient_loss | -0.000127     |
|    value_loss           | 0.0959        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.81e+03      |
| time/                   |               |
|    fps                  | 18743         |
|    iterations           | 36            |
|    time_elapsed         | 15            |
|    total_timesteps      | 294912        |
| train/                  |               |
|    approx_kl            | 5.8821024e-07 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0088       |
|    explained_variance   | 0.051         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0515        |
|    n_updates            | 210           |
|    policy_gradient_loss | -4.16e-05     |
|    value_loss           | 0.0987        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.38e+03      |
|    ep_rew_mean          | 5.96e+03      |
| time/                   |               |
|    fps                  | 18753         |
|    iterations           | 37            |
|    time_elapsed         | 16            |
|    total_timesteps      | 303104        |
| train/                  |               |
|    approx_kl            | 3.3714605e-07 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00853      |
|    explained_variance   | 0.0556        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0473        |
|    n_updates            | 216           |
|    policy_gradient_loss | -2.62e-05     |
|    value_loss           | 0.0922        |
-------------------------------------------
[SAVED] bots/models/PPO_Trailing_Stop_Loss/ppo_stop_loss_selector_rl_stop_loss_training_6E=F.zip

[TRAIN] CL=F — rows: 7306, actions: [1.0, 2.0, 3.0, 4.0], envs: 8
Using cpu device
------------------------------
| time/              |       |
|    fps             | 21722 |
|    iterations      | 1     |
|    time_elapsed    | 0     |
|    total_timesteps | 8192  |
------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19606       |
|    iterations           | 2           |
|    time_elapsed         | 0           |
|    total_timesteps      | 16384       |
| train/                  |             |
|    approx_kl            | 0.013938623 |
|    clip_fraction        | 0.0925      |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.38       |
|    explained_variance   | -0.125      |
|    learning_rate        | 0.0003      |
|    loss                 | 0.00518     |
|    n_updates            | 6           |
|    policy_gradient_loss | -0.0645     |
|    value_loss           | 0.291       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19199       |
|    iterations           | 3           |
|    time_elapsed         | 1           |
|    total_timesteps      | 24576       |
| train/                  |             |
|    approx_kl            | 0.018464828 |
|    clip_fraction        | 0.104       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.34       |
|    explained_variance   | -0.0822     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0235     |
|    n_updates            | 12          |
|    policy_gradient_loss | -0.0792     |
|    value_loss           | 0.249       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 18959       |
|    iterations           | 4           |
|    time_elapsed         | 1           |
|    total_timesteps      | 32768       |
| train/                  |             |
|    approx_kl            | 0.022791272 |
|    clip_fraction        | 0.136       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.24       |
|    explained_variance   | -0.0282     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0457     |
|    n_updates            | 18          |
|    policy_gradient_loss | -0.0936     |
|    value_loss           | 0.248       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 18780       |
|    iterations           | 5           |
|    time_elapsed         | 2           |
|    total_timesteps      | 40960       |
| train/                  |             |
|    approx_kl            | 0.021041423 |
|    clip_fraction        | 0.086       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.08       |
|    explained_variance   | -0.0107     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0349     |
|    n_updates            | 24          |
|    policy_gradient_loss | -0.088      |
|    value_loss           | 0.255       |
-----------------------------------------
----------------------------------------
| time/                   |            |
|    fps                  | 18498      |
|    iterations           | 6          |
|    time_elapsed         | 2          |
|    total_timesteps      | 49152      |
| train/                  |            |
|    approx_kl            | 0.01860438 |
|    clip_fraction        | 0.0951     |
|    clip_range           | 0.2        |
|    entropy_loss         | -0.892     |
|    explained_variance   | -0.000775  |
|    learning_rate        | 0.0003     |
|    loss                 | -0.0117    |
|    n_updates            | 30         |
|    policy_gradient_loss | -0.0758    |
|    value_loss           | 0.238      |
----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 18506       |
|    iterations           | 7           |
|    time_elapsed         | 3           |
|    total_timesteps      | 57344       |
| train/                  |             |
|    approx_kl            | 0.014656736 |
|    clip_fraction        | 0.087       |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.695      |
|    explained_variance   | -0.000294   |
|    learning_rate        | 0.0003      |
|    loss                 | 0.00452     |
|    n_updates            | 36          |
|    policy_gradient_loss | -0.0613     |
|    value_loss           | 0.207       |
-----------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.31e+03    |
|    ep_rew_mean          | 3.84e+03    |
| time/                   |             |
|    fps                  | 18472       |
|    iterations           | 8           |
|    time_elapsed         | 3           |
|    total_timesteps      | 65536       |
| train/                  |             |
|    approx_kl            | 0.010473039 |
|    clip_fraction        | 0.0636      |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.518      |
|    explained_variance   | -0.00106    |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0162      |
|    n_updates            | 42          |
|    policy_gradient_loss | -0.0465     |
|    value_loss           | 0.177       |
-----------------------------------------
----------------------------------------
| rollout/                |            |
|    ep_len_mean          | 7.31e+03   |
|    ep_rew_mean          | 3.84e+03   |
| time/                   |            |
|    fps                  | 18434      |
|    iterations           | 9          |
|    time_elapsed         | 3          |
|    total_timesteps      | 73728      |
| train/                  |            |
|    approx_kl            | 0.00641768 |
|    clip_fraction        | 0.0449     |
|    clip_range           | 0.2        |
|    entropy_loss         | -0.383     |
|    explained_variance   | 0.00533    |
|    learning_rate        | 0.0003     |
|    loss                 | 0.029      |
|    n_updates            | 48         |
|    policy_gradient_loss | -0.0329    |
|    value_loss           | 0.154      |
----------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.31e+03     |
|    ep_rew_mean          | 3.84e+03     |
| time/                   |              |
|    fps                  | 18432        |
|    iterations           | 10           |
|    time_elapsed         | 4            |
|    total_timesteps      | 81920        |
| train/                  |              |
|    approx_kl            | 0.0035958125 |
|    clip_fraction        | 0.0241       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.286       |
|    explained_variance   | 0.0205       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0313       |
|    n_updates            | 54           |
|    policy_gradient_loss | -0.0223      |
|    value_loss           | 0.13         |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.31e+03     |
|    ep_rew_mean          | 3.84e+03     |
| time/                   |              |
|    fps                  | 18404        |
|    iterations           | 11           |
|    time_elapsed         | 4            |
|    total_timesteps      | 90112        |
| train/                  |              |
|    approx_kl            | 0.0022716466 |
|    clip_fraction        | 0.0156       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.214       |
|    explained_variance   | 0.0388       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0306       |
|    n_updates            | 60           |
|    policy_gradient_loss | -0.0153      |
|    value_loss           | 0.111        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.31e+03     |
|    ep_rew_mean          | 3.84e+03     |
| time/                   |              |
|    fps                  | 18380        |
|    iterations           | 12           |
|    time_elapsed         | 5            |
|    total_timesteps      | 98304        |
| train/                  |              |
|    approx_kl            | 0.0016360199 |
|    clip_fraction        | 0.0114       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.159       |
|    explained_variance   | 0.039        |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0313       |
|    n_updates            | 66           |
|    policy_gradient_loss | -0.0121      |
|    value_loss           | 0.103        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.31e+03     |
|    ep_rew_mean          | 3.84e+03     |
| time/                   |              |
|    fps                  | 18346        |
|    iterations           | 13           |
|    time_elapsed         | 5            |
|    total_timesteps      | 106496       |
| train/                  |              |
|    approx_kl            | 0.0012078169 |
|    clip_fraction        | 0.00877      |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.119       |
|    explained_variance   | 0.0588       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0362       |
|    n_updates            | 72           |
|    policy_gradient_loss | -0.00902     |
|    value_loss           | 0.1          |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.31e+03     |
|    ep_rew_mean          | 3.84e+03     |
| time/                   |              |
|    fps                  | 18316        |
|    iterations           | 14           |
|    time_elapsed         | 6            |
|    total_timesteps      | 114688       |
| train/                  |              |
|    approx_kl            | 0.0007647462 |
|    clip_fraction        | 0.00606      |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0887      |
|    explained_variance   | 0.0691       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.035        |
|    n_updates            | 78           |
|    policy_gradient_loss | -0.00655     |
|    value_loss           | 0.0901       |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.31e+03     |
|    ep_rew_mean          | 5.09e+03     |
| time/                   |              |
|    fps                  | 18309        |
|    iterations           | 15           |
|    time_elapsed         | 6            |
|    total_timesteps      | 122880       |
| train/                  |              |
|    approx_kl            | 0.0003838509 |
|    clip_fraction        | 0.0025       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0682      |
|    explained_variance   | 0.0711       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0361       |
|    n_updates            | 84           |
|    policy_gradient_loss | -0.00419     |
|    value_loss           | 0.086        |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.09e+03      |
| time/                   |               |
|    fps                  | 18330         |
|    iterations           | 16            |
|    time_elapsed         | 7             |
|    total_timesteps      | 131072        |
| train/                  |               |
|    approx_kl            | 0.00024317268 |
|    clip_fraction        | 0.00118       |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0541       |
|    explained_variance   | 0.0885        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0341        |
|    n_updates            | 90            |
|    policy_gradient_loss | -0.00313      |
|    value_loss           | 0.0821        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.09e+03      |
| time/                   |               |
|    fps                  | 18278         |
|    iterations           | 17            |
|    time_elapsed         | 7             |
|    total_timesteps      | 139264        |
| train/                  |               |
|    approx_kl            | 0.00013239255 |
|    clip_fraction        | 0.000244      |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0439       |
|    explained_variance   | 0.0779        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0377        |
|    n_updates            | 96            |
|    policy_gradient_loss | -0.00204      |
|    value_loss           | 0.0825        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.09e+03      |
| time/                   |               |
|    fps                  | 18278         |
|    iterations           | 18            |
|    time_elapsed         | 8             |
|    total_timesteps      | 147456        |
| train/                  |               |
|    approx_kl            | 7.5353804e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0366       |
|    explained_variance   | 0.0849        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0407        |
|    n_updates            | 102           |
|    policy_gradient_loss | -0.00141      |
|    value_loss           | 0.083         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.09e+03      |
| time/                   |               |
|    fps                  | 18280         |
|    iterations           | 19            |
|    time_elapsed         | 8             |
|    total_timesteps      | 155648        |
| train/                  |               |
|    approx_kl            | 3.7433987e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0316       |
|    explained_variance   | 0.106         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.037         |
|    n_updates            | 108           |
|    policy_gradient_loss | -0.000836     |
|    value_loss           | 0.079         |
-------------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.31e+03    |
|    ep_rew_mean          | 5.09e+03    |
| time/                   |             |
|    fps                  | 18306       |
|    iterations           | 20          |
|    time_elapsed         | 8           |
|    total_timesteps      | 163840      |
| train/                  |             |
|    approx_kl            | 3.05703e-05 |
|    clip_fraction        | 0           |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.0276     |
|    explained_variance   | 0.105       |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0386      |
|    n_updates            | 114         |
|    policy_gradient_loss | -0.000782   |
|    value_loss           | 0.0807      |
-----------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.09e+03      |
| time/                   |               |
|    fps                  | 18334         |
|    iterations           | 21            |
|    time_elapsed         | 9             |
|    total_timesteps      | 172032        |
| train/                  |               |
|    approx_kl            | 3.9773746e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0244       |
|    explained_variance   | 0.12          |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0367        |
|    n_updates            | 120           |
|    policy_gradient_loss | -0.000863     |
|    value_loss           | 0.0793        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.59e+03      |
| time/                   |               |
|    fps                  | 18327         |
|    iterations           | 22            |
|    time_elapsed         | 9             |
|    total_timesteps      | 180224        |
| train/                  |               |
|    approx_kl            | 1.6443533e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0215       |
|    explained_variance   | 0.0976        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0374        |
|    n_updates            | 126           |
|    policy_gradient_loss | -0.000474     |
|    value_loss           | 0.0805        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.59e+03      |
| time/                   |               |
|    fps                  | 18334         |
|    iterations           | 23            |
|    time_elapsed         | 10            |
|    total_timesteps      | 188416        |
| train/                  |               |
|    approx_kl            | 1.4652971e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0195       |
|    explained_variance   | 0.107         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0392        |
|    n_updates            | 132           |
|    policy_gradient_loss | -0.000429     |
|    value_loss           | 0.0807        |
-------------------------------------------
--------------------------------------------
| rollout/                |                |
|    ep_len_mean          | 7.31e+03       |
|    ep_rew_mean          | 5.59e+03       |
| time/                   |                |
|    fps                  | 18320          |
|    iterations           | 24             |
|    time_elapsed         | 10             |
|    total_timesteps      | 196608         |
| train/                  |                |
|    approx_kl            | 1.21653575e-05 |
|    clip_fraction        | 0              |
|    clip_range           | 0.2            |
|    entropy_loss         | -0.0176        |
|    explained_variance   | 0.112          |
|    learning_rate        | 0.0003         |
|    loss                 | 0.0386         |
|    n_updates            | 138            |
|    policy_gradient_loss | -0.000424      |
|    value_loss           | 0.0762         |
--------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.59e+03      |
| time/                   |               |
|    fps                  | 18307         |
|    iterations           | 25            |
|    time_elapsed         | 11            |
|    total_timesteps      | 204800        |
| train/                  |               |
|    approx_kl            | 3.9155493e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0161       |
|    explained_variance   | 0.119         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0385        |
|    n_updates            | 144           |
|    policy_gradient_loss | -0.000152     |
|    value_loss           | 0.0781        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.59e+03      |
| time/                   |               |
|    fps                  | 18287         |
|    iterations           | 26            |
|    time_elapsed         | 11            |
|    total_timesteps      | 212992        |
| train/                  |               |
|    approx_kl            | 5.5898927e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0151       |
|    explained_variance   | 0.136         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0394        |
|    n_updates            | 150           |
|    policy_gradient_loss | -0.000239     |
|    value_loss           | 0.0786        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.31e+03     |
|    ep_rew_mean          | 5.59e+03     |
| time/                   |              |
|    fps                  | 18282        |
|    iterations           | 27           |
|    time_elapsed         | 12           |
|    total_timesteps      | 221184       |
| train/                  |              |
|    approx_kl            | 4.934598e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.014       |
|    explained_variance   | 0.123        |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0359       |
|    n_updates            | 156          |
|    policy_gradient_loss | -0.000213    |
|    value_loss           | 0.0773       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.59e+03      |
| time/                   |               |
|    fps                  | 18272         |
|    iterations           | 28            |
|    time_elapsed         | 12            |
|    total_timesteps      | 229376        |
| train/                  |               |
|    approx_kl            | 4.1564417e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0131       |
|    explained_variance   | 0.117         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0386        |
|    n_updates            | 162           |
|    policy_gradient_loss | -0.000179     |
|    value_loss           | 0.0768        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.84e+03      |
| time/                   |               |
|    fps                  | 18291         |
|    iterations           | 29            |
|    time_elapsed         | 12            |
|    total_timesteps      | 237568        |
| train/                  |               |
|    approx_kl            | 3.2159878e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0122       |
|    explained_variance   | 0.122         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0355        |
|    n_updates            | 168           |
|    policy_gradient_loss | -0.000142     |
|    value_loss           | 0.0754        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.84e+03      |
| time/                   |               |
|    fps                  | 18309         |
|    iterations           | 30            |
|    time_elapsed         | 13            |
|    total_timesteps      | 245760        |
| train/                  |               |
|    approx_kl            | 4.0169834e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0115       |
|    explained_variance   | 0.126         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0366        |
|    n_updates            | 174           |
|    policy_gradient_loss | -0.000192     |
|    value_loss           | 0.075         |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.31e+03     |
|    ep_rew_mean          | 5.84e+03     |
| time/                   |              |
|    fps                  | 18323        |
|    iterations           | 31           |
|    time_elapsed         | 13           |
|    total_timesteps      | 253952       |
| train/                  |              |
|    approx_kl            | 3.976922e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0108      |
|    explained_variance   | 0.135        |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0365       |
|    n_updates            | 180          |
|    policy_gradient_loss | -0.00018     |
|    value_loss           | 0.0747       |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.31e+03     |
|    ep_rew_mean          | 5.84e+03     |
| time/                   |              |
|    fps                  | 18335        |
|    iterations           | 32           |
|    time_elapsed         | 14           |
|    total_timesteps      | 262144       |
| train/                  |              |
|    approx_kl            | 1.768647e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0101      |
|    explained_variance   | 0.13         |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0357       |
|    n_updates            | 186          |
|    policy_gradient_loss | -9e-05       |
|    value_loss           | 0.0735       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.84e+03      |
| time/                   |               |
|    fps                  | 18235         |
|    iterations           | 33            |
|    time_elapsed         | 14            |
|    total_timesteps      | 270336        |
| train/                  |               |
|    approx_kl            | 1.0735894e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00954      |
|    explained_variance   | 0.139         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0385        |
|    n_updates            | 192           |
|    policy_gradient_loss | -7.3e-05      |
|    value_loss           | 0.0747        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.84e+03      |
| time/                   |               |
|    fps                  | 18241         |
|    iterations           | 34            |
|    time_elapsed         | 15            |
|    total_timesteps      | 278528        |
| train/                  |               |
|    approx_kl            | 1.3901445e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00913      |
|    explained_variance   | 0.129         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0352        |
|    n_updates            | 198           |
|    policy_gradient_loss | -9.16e-05     |
|    value_loss           | 0.0745        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.84e+03      |
| time/                   |               |
|    fps                  | 18248         |
|    iterations           | 35            |
|    time_elapsed         | 15            |
|    total_timesteps      | 286720        |
| train/                  |               |
|    approx_kl            | 3.3095348e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00865      |
|    explained_variance   | 0.142         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0359        |
|    n_updates            | 204           |
|    policy_gradient_loss | -0.000159     |
|    value_loss           | 0.0759        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.31e+03     |
|    ep_rew_mean          | 5.99e+03     |
| time/                   |              |
|    fps                  | 18250        |
|    iterations           | 36           |
|    time_elapsed         | 16           |
|    total_timesteps      | 294912       |
| train/                  |              |
|    approx_kl            | 8.042334e-07 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.00816     |
|    explained_variance   | 0.14         |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0379       |
|    n_updates            | 210          |
|    policy_gradient_loss | -5.17e-05    |
|    value_loss           | 0.0781       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.31e+03      |
|    ep_rew_mean          | 5.99e+03      |
| time/                   |               |
|    fps                  | 18263         |
|    iterations           | 37            |
|    time_elapsed         | 16            |
|    total_timesteps      | 303104        |
| train/                  |               |
|    approx_kl            | 3.0693627e-07 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00782      |
|    explained_variance   | 0.143         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0366        |
|    n_updates            | 216           |
|    policy_gradient_loss | -2.78e-05     |
|    value_loss           | 0.0734        |
-------------------------------------------
[SAVED] bots/models/PPO_Trailing_Stop_Loss/ppo_stop_loss_selector_rl_stop_loss_training_CL=F.zip

[TRAIN] GC=F — rows: 7300, actions: [1.0, 2.0, 3.0, 4.0], envs: 8
Using cpu device
------------------------------
| time/              |       |
|    fps             | 21410 |
|    iterations      | 1     |
|    time_elapsed    | 0     |
|    total_timesteps | 8192  |
------------------------------
------------------------------------------
| time/                   |              |
|    fps                  | 20019        |
|    iterations           | 2            |
|    time_elapsed         | 0            |
|    total_timesteps      | 16384        |
| train/                  |              |
|    approx_kl            | 0.0145595735 |
|    clip_fraction        | 0.104        |
|    clip_range           | 0.2          |
|    entropy_loss         | -1.38        |
|    explained_variance   | -0.0853      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.219        |
|    n_updates            | 6            |
|    policy_gradient_loss | -0.0614      |
|    value_loss           | 0.874        |
------------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19652       |
|    iterations           | 3           |
|    time_elapsed         | 1           |
|    total_timesteps      | 24576       |
| train/                  |             |
|    approx_kl            | 0.014348937 |
|    clip_fraction        | 0.0834      |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.35       |
|    explained_variance   | -0.194      |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0729      |
|    n_updates            | 12          |
|    policy_gradient_loss | -0.0606     |
|    value_loss           | 0.526       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19335       |
|    iterations           | 4           |
|    time_elapsed         | 1           |
|    total_timesteps      | 32768       |
| train/                  |             |
|    approx_kl            | 0.025508685 |
|    clip_fraction        | 0.154       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.26       |
|    explained_variance   | -0.249      |
|    learning_rate        | 0.0003      |
|    loss                 | -0.000587   |
|    n_updates            | 18          |
|    policy_gradient_loss | -0.0756     |
|    value_loss           | 0.319       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19150       |
|    iterations           | 5           |
|    time_elapsed         | 2           |
|    total_timesteps      | 40960       |
| train/                  |             |
|    approx_kl            | 0.033062644 |
|    clip_fraction        | 0.245       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.07       |
|    explained_variance   | -0.128      |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0112     |
|    n_updates            | 24          |
|    policy_gradient_loss | -0.0874     |
|    value_loss           | 0.275       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19085       |
|    iterations           | 6           |
|    time_elapsed         | 2           |
|    total_timesteps      | 49152       |
| train/                  |             |
|    approx_kl            | 0.021857377 |
|    clip_fraction        | 0.11        |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.854      |
|    explained_variance   | -0.0403     |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0117      |
|    n_updates            | 30          |
|    policy_gradient_loss | -0.0658     |
|    value_loss           | 0.248       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19045       |
|    iterations           | 7           |
|    time_elapsed         | 3           |
|    total_timesteps      | 57344       |
| train/                  |             |
|    approx_kl            | 0.018235309 |
|    clip_fraction        | 0.101       |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.632      |
|    explained_variance   | -0.0242     |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0321      |
|    n_updates            | 36          |
|    policy_gradient_loss | -0.0523     |
|    value_loss           | 0.225       |
-----------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.3e+03     |
|    ep_rew_mean          | 3.68e+03    |
| time/                   |             |
|    fps                  | 18967       |
|    iterations           | 8           |
|    time_elapsed         | 3           |
|    total_timesteps      | 65536       |
| train/                  |             |
|    approx_kl            | 0.011451498 |
|    clip_fraction        | 0.0651      |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.442      |
|    explained_variance   | -0.0223     |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0463      |
|    n_updates            | 42          |
|    policy_gradient_loss | -0.0357     |
|    value_loss           | 0.196       |
-----------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 3.68e+03     |
| time/                   |              |
|    fps                  | 18900        |
|    iterations           | 9            |
|    time_elapsed         | 3            |
|    total_timesteps      | 73728        |
| train/                  |              |
|    approx_kl            | 0.0056556673 |
|    clip_fraction        | 0.04         |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.312       |
|    explained_variance   | -0.0204      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0588       |
|    n_updates            | 48           |
|    policy_gradient_loss | -0.0225      |
|    value_loss           | 0.178        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 3.68e+03     |
| time/                   |              |
|    fps                  | 18908        |
|    iterations           | 10           |
|    time_elapsed         | 4            |
|    total_timesteps      | 81920        |
| train/                  |              |
|    approx_kl            | 0.0031574985 |
|    clip_fraction        | 0.0215       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.226       |
|    explained_variance   | -0.0221      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0608       |
|    n_updates            | 54           |
|    policy_gradient_loss | -0.014       |
|    value_loss           | 0.164        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 3.68e+03     |
| time/                   |              |
|    fps                  | 18886        |
|    iterations           | 11           |
|    time_elapsed         | 4            |
|    total_timesteps      | 90112        |
| train/                  |              |
|    approx_kl            | 0.0017940018 |
|    clip_fraction        | 0.014        |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.165       |
|    explained_variance   | -0.0226      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0656       |
|    n_updates            | 60           |
|    policy_gradient_loss | -0.00908     |
|    value_loss           | 0.155        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 3.68e+03     |
| time/                   |              |
|    fps                  | 18885        |
|    iterations           | 12           |
|    time_elapsed         | 5            |
|    total_timesteps      | 98304        |
| train/                  |              |
|    approx_kl            | 0.0012823453 |
|    clip_fraction        | 0.0093       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.121       |
|    explained_variance   | -0.0165      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0634       |
|    n_updates            | 66           |
|    policy_gradient_loss | -0.00695     |
|    value_loss           | 0.151        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 3.68e+03     |
| time/                   |              |
|    fps                  | 18844        |
|    iterations           | 13           |
|    time_elapsed         | 5            |
|    total_timesteps      | 106496       |
| train/                  |              |
|    approx_kl            | 0.0007296989 |
|    clip_fraction        | 0.00614      |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0903      |
|    explained_variance   | -0.021       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.064        |
|    n_updates            | 72           |
|    policy_gradient_loss | -0.00485     |
|    value_loss           | 0.145        |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 3.68e+03      |
| time/                   |               |
|    fps                  | 18786         |
|    iterations           | 14            |
|    time_elapsed         | 6             |
|    total_timesteps      | 114688        |
| train/                  |               |
|    approx_kl            | 0.00038570867 |
|    clip_fraction        | 0.00226       |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.07         |
|    explained_variance   | -0.0191       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0644        |
|    n_updates            | 78            |
|    policy_gradient_loss | -0.00317      |
|    value_loss           | 0.143         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 4.82e+03      |
| time/                   |               |
|    fps                  | 18755         |
|    iterations           | 15            |
|    time_elapsed         | 6             |
|    total_timesteps      | 122880        |
| train/                  |               |
|    approx_kl            | 0.00022462045 |
|    clip_fraction        | 0.00106       |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0558       |
|    explained_variance   | -0.0214       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0641        |
|    n_updates            | 84            |
|    policy_gradient_loss | -0.00216      |
|    value_loss           | 0.138         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 4.82e+03      |
| time/                   |               |
|    fps                  | 18764         |
|    iterations           | 16            |
|    time_elapsed         | 6             |
|    total_timesteps      | 131072        |
| train/                  |               |
|    approx_kl            | 0.00011899312 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0459       |
|    explained_variance   | -0.0163       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0661        |
|    n_updates            | 90            |
|    policy_gradient_loss | -0.00141      |
|    value_loss           | 0.136         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 4.82e+03      |
| time/                   |               |
|    fps                  | 18771         |
|    iterations           | 17            |
|    time_elapsed         | 7             |
|    total_timesteps      | 139264        |
| train/                  |               |
|    approx_kl            | 8.1258666e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0386       |
|    explained_variance   | -0.0136       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0672        |
|    n_updates            | 96            |
|    policy_gradient_loss | -0.00103      |
|    value_loss           | 0.14          |
-------------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.3e+03     |
|    ep_rew_mean          | 4.82e+03    |
| time/                   |             |
|    fps                  | 18776       |
|    iterations           | 18          |
|    time_elapsed         | 7           |
|    total_timesteps      | 147456      |
| train/                  |             |
|    approx_kl            | 4.85883e-05 |
|    clip_fraction        | 0           |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.0332     |
|    explained_variance   | -0.0126     |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0726      |
|    n_updates            | 102         |
|    policy_gradient_loss | -0.000727   |
|    value_loss           | 0.143       |
-----------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 4.82e+03      |
| time/                   |               |
|    fps                  | 18754         |
|    iterations           | 19            |
|    time_elapsed         | 8             |
|    total_timesteps      | 155648        |
| train/                  |               |
|    approx_kl            | 2.0459462e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0292       |
|    explained_variance   | -0.0178       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0668        |
|    n_updates            | 108           |
|    policy_gradient_loss | -0.000421     |
|    value_loss           | 0.135         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 4.82e+03      |
| time/                   |               |
|    fps                  | 18746         |
|    iterations           | 20            |
|    time_elapsed         | 8             |
|    total_timesteps      | 163840        |
| train/                  |               |
|    approx_kl            | 1.9647574e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0263       |
|    explained_variance   | -0.013        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0648        |
|    n_updates            | 114           |
|    policy_gradient_loss | -0.000392     |
|    value_loss           | 0.134         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 4.82e+03      |
| time/                   |               |
|    fps                  | 18709         |
|    iterations           | 21            |
|    time_elapsed         | 9             |
|    total_timesteps      | 172032        |
| train/                  |               |
|    approx_kl            | 2.1511172e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0238       |
|    explained_variance   | -0.00799      |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0701        |
|    n_updates            | 120           |
|    policy_gradient_loss | -0.000406     |
|    value_loss           | 0.139         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.25e+03      |
| time/                   |               |
|    fps                  | 18702         |
|    iterations           | 22            |
|    time_elapsed         | 9             |
|    total_timesteps      | 180224        |
| train/                  |               |
|    approx_kl            | 1.0006443e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0216       |
|    explained_variance   | -0.00143      |
|    learning_rate        | 0.0003        |
|    loss                 | 0.069         |
|    n_updates            | 126           |
|    policy_gradient_loss | -0.000229     |
|    value_loss           | 0.136         |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 5.25e+03     |
| time/                   |              |
|    fps                  | 18703        |
|    iterations           | 23           |
|    time_elapsed         | 10           |
|    total_timesteps      | 188416       |
| train/                  |              |
|    approx_kl            | 8.820854e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0199      |
|    explained_variance   | 0.000704     |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0631       |
|    n_updates            | 132          |
|    policy_gradient_loss | -0.000237    |
|    value_loss           | 0.132        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 5.25e+03     |
| time/                   |              |
|    fps                  | 18709        |
|    iterations           | 24           |
|    time_elapsed         | 10           |
|    total_timesteps      | 196608       |
| train/                  |              |
|    approx_kl            | 8.881369e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0183      |
|    explained_variance   | 0.000622     |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0678       |
|    n_updates            | 138          |
|    policy_gradient_loss | -0.000233    |
|    value_loss           | 0.139        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 5.25e+03     |
| time/                   |              |
|    fps                  | 18710        |
|    iterations           | 25           |
|    time_elapsed         | 10           |
|    total_timesteps      | 204800       |
| train/                  |              |
|    approx_kl            | 5.019261e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0169      |
|    explained_variance   | 0.00109      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0675       |
|    n_updates            | 144          |
|    policy_gradient_loss | -0.000162    |
|    value_loss           | 0.133        |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.25e+03      |
| time/                   |               |
|    fps                  | 18713         |
|    iterations           | 26            |
|    time_elapsed         | 11            |
|    total_timesteps      | 212992        |
| train/                  |               |
|    approx_kl            | 5.5480486e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0157       |
|    explained_variance   | 9.97e-05      |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0645        |
|    n_updates            | 150           |
|    policy_gradient_loss | -0.000174     |
|    value_loss           | 0.134         |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 5.25e+03     |
| time/                   |              |
|    fps                  | 18709        |
|    iterations           | 27           |
|    time_elapsed         | 11           |
|    total_timesteps      | 221184       |
| train/                  |              |
|    approx_kl            | 5.821632e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0146      |
|    explained_variance   | 0.000478     |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0667       |
|    n_updates            | 156          |
|    policy_gradient_loss | -0.000177    |
|    value_loss           | 0.135        |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.25e+03      |
| time/                   |               |
|    fps                  | 18680         |
|    iterations           | 28            |
|    time_elapsed         | 12            |
|    total_timesteps      | 229376        |
| train/                  |               |
|    approx_kl            | 4.0204686e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0136       |
|    explained_variance   | 0.0024        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0661        |
|    n_updates            | 162           |
|    policy_gradient_loss | -0.000127     |
|    value_loss           | 0.134         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.47e+03      |
| time/                   |               |
|    fps                  | 18675         |
|    iterations           | 29            |
|    time_elapsed         | 12            |
|    total_timesteps      | 237568        |
| train/                  |               |
|    approx_kl            | 2.4277542e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0128       |
|    explained_variance   | 0.00119       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0687        |
|    n_updates            | 168           |
|    policy_gradient_loss | -9.01e-05     |
|    value_loss           | 0.134         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.47e+03      |
| time/                   |               |
|    fps                  | 18671         |
|    iterations           | 30            |
|    time_elapsed         | 13            |
|    total_timesteps      | 245760        |
| train/                  |               |
|    approx_kl            | 2.6972193e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0121       |
|    explained_variance   | 0.00154       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0647        |
|    n_updates            | 174           |
|    policy_gradient_loss | -9.83e-05     |
|    value_loss           | 0.133         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.47e+03      |
| time/                   |               |
|    fps                  | 18659         |
|    iterations           | 31            |
|    time_elapsed         | 13            |
|    total_timesteps      | 253952        |
| train/                  |               |
|    approx_kl            | 2.2189924e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0114       |
|    explained_variance   | 0.0021        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.069         |
|    n_updates            | 180           |
|    policy_gradient_loss | -7.99e-05     |
|    value_loss           | 0.135         |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 5.47e+03     |
| time/                   |              |
|    fps                  | 18633        |
|    iterations           | 32           |
|    time_elapsed         | 14           |
|    total_timesteps      | 262144       |
| train/                  |              |
|    approx_kl            | 1.028835e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0109      |
|    explained_variance   | 0.00312      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0688       |
|    n_updates            | 186          |
|    policy_gradient_loss | -4.58e-05    |
|    value_loss           | 0.135        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 5.47e+03     |
| time/                   |              |
|    fps                  | 18626        |
|    iterations           | 33           |
|    time_elapsed         | 14           |
|    total_timesteps      | 270336       |
| train/                  |              |
|    approx_kl            | 9.115174e-07 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0104      |
|    explained_variance   | 0.00299      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0658       |
|    n_updates            | 192          |
|    policy_gradient_loss | -4.91e-05    |
|    value_loss           | 0.132        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 5.47e+03     |
| time/                   |              |
|    fps                  | 18624        |
|    iterations           | 34           |
|    time_elapsed         | 14           |
|    total_timesteps      | 278528       |
| train/                  |              |
|    approx_kl            | 9.727883e-07 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.01        |
|    explained_variance   | 0.0025       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0669       |
|    n_updates            | 198          |
|    policy_gradient_loss | -4.56e-05    |
|    value_loss           | 0.136        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 5.47e+03     |
| time/                   |              |
|    fps                  | 18620        |
|    iterations           | 35           |
|    time_elapsed         | 15           |
|    total_timesteps      | 286720       |
| train/                  |              |
|    approx_kl            | 2.963512e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.00955     |
|    explained_variance   | 0.00197      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0652       |
|    n_updates            | 204          |
|    policy_gradient_loss | -0.000108    |
|    value_loss           | 0.133        |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.6e+03       |
| time/                   |               |
|    fps                  | 18610         |
|    iterations           | 36            |
|    time_elapsed         | 15            |
|    total_timesteps      | 294912        |
| train/                  |               |
|    approx_kl            | 5.6384306e-07 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00903      |
|    explained_variance   | 0.00313       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0668        |
|    n_updates            | 210           |
|    policy_gradient_loss | -2.65e-05     |
|    value_loss           | 0.134         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.6e+03       |
| time/                   |               |
|    fps                  | 18598         |
|    iterations           | 37            |
|    time_elapsed         | 16            |
|    total_timesteps      | 303104        |
| train/                  |               |
|    approx_kl            | 2.8371142e-07 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00871      |
|    explained_variance   | 0.00409       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0673        |
|    n_updates            | 216           |
|    policy_gradient_loss | -2.04e-05     |
|    value_loss           | 0.134         |
-------------------------------------------
[SAVED] bots/models/PPO_Trailing_Stop_Loss/ppo_stop_loss_selector_rl_stop_loss_training_GC=F.zip

[TRAIN] LE=F — rows: 7176, actions: [1.0, 2.0, 3.0, 4.0], envs: 8
Using cpu device
------------------------------
| time/              |       |
|    fps             | 21088 |
|    iterations      | 1     |
|    time_elapsed    | 0     |
|    total_timesteps | 8192  |
------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19437       |
|    iterations           | 2           |
|    time_elapsed         | 0           |
|    total_timesteps      | 16384       |
| train/                  |             |
|    approx_kl            | 0.015467179 |
|    clip_fraction        | 0.103       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.38       |
|    explained_variance   | -0.0724     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.00778    |
|    n_updates            | 6           |
|    policy_gradient_loss | -0.0692     |
|    value_loss           | 0.26        |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19136       |
|    iterations           | 3           |
|    time_elapsed         | 1           |
|    total_timesteps      | 24576       |
| train/                  |             |
|    approx_kl            | 0.020210564 |
|    clip_fraction        | 0.115       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.34       |
|    explained_variance   | -0.0411     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0307     |
|    n_updates            | 12          |
|    policy_gradient_loss | -0.0825     |
|    value_loss           | 0.239       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 18940       |
|    iterations           | 4           |
|    time_elapsed         | 1           |
|    total_timesteps      | 32768       |
| train/                  |             |
|    approx_kl            | 0.023914147 |
|    clip_fraction        | 0.157       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.23       |
|    explained_variance   | -0.0241     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0489     |
|    n_updates            | 18          |
|    policy_gradient_loss | -0.0959     |
|    value_loss           | 0.25        |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 18822       |
|    iterations           | 5           |
|    time_elapsed         | 2           |
|    total_timesteps      | 40960       |
| train/                  |             |
|    approx_kl            | 0.019508064 |
|    clip_fraction        | 0.0703      |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.07       |
|    explained_variance   | -0.0143     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0293     |
|    n_updates            | 24          |
|    policy_gradient_loss | -0.0838     |
|    value_loss           | 0.256       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 18721       |
|    iterations           | 6           |
|    time_elapsed         | 2           |
|    total_timesteps      | 49152       |
| train/                  |             |
|    approx_kl            | 0.018300926 |
|    clip_fraction        | 0.1         |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.877      |
|    explained_variance   | -0.0121     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0111     |
|    n_updates            | 30          |
|    policy_gradient_loss | -0.0748     |
|    value_loss           | 0.239       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 18705       |
|    iterations           | 7           |
|    time_elapsed         | 3           |
|    total_timesteps      | 57344       |
| train/                  |             |
|    approx_kl            | 0.014512697 |
|    clip_fraction        | 0.0883      |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.68       |
|    explained_variance   | -0.00972    |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0112      |
|    n_updates            | 36          |
|    policy_gradient_loss | -0.0595     |
|    value_loss           | 0.206       |
-----------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.18e+03     |
|    ep_rew_mean          | 3.77e+03     |
| time/                   |              |
|    fps                  | 18694        |
|    iterations           | 8            |
|    time_elapsed         | 3            |
|    total_timesteps      | 65536        |
| train/                  |              |
|    approx_kl            | 0.0100190025 |
|    clip_fraction        | 0.063        |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.505       |
|    explained_variance   | -0.00967     |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0199       |
|    n_updates            | 42           |
|    policy_gradient_loss | -0.0452      |
|    value_loss           | 0.177        |
------------------------------------------
----------------------------------------
| rollout/                |            |
|    ep_len_mean          | 7.18e+03   |
|    ep_rew_mean          | 3.77e+03   |
| time/                   |            |
|    fps                  | 18691      |
|    iterations           | 9          |
|    time_elapsed         | 3          |
|    total_timesteps      | 73728      |
| train/                  |            |
|    approx_kl            | 0.00595114 |
|    clip_fraction        | 0.0443     |
|    clip_range           | 0.2        |
|    entropy_loss         | -0.373     |
|    explained_variance   | -0.011     |
|    learning_rate        | 0.0003     |
|    loss                 | 0.0283     |
|    n_updates            | 48         |
|    policy_gradient_loss | -0.0319    |
|    value_loss           | 0.155      |
----------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.18e+03    |
|    ep_rew_mean          | 3.77e+03    |
| time/                   |             |
|    fps                  | 18709       |
|    iterations           | 10          |
|    time_elapsed         | 4           |
|    total_timesteps      | 81920       |
| train/                  |             |
|    approx_kl            | 0.003399176 |
|    clip_fraction        | 0.0231      |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.28       |
|    explained_variance   | -0.000722   |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0309      |
|    n_updates            | 54          |
|    policy_gradient_loss | -0.0219     |
|    value_loss           | 0.132       |
-----------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.18e+03     |
|    ep_rew_mean          | 3.77e+03     |
| time/                   |              |
|    fps                  | 18649        |
|    iterations           | 11           |
|    time_elapsed         | 4            |
|    total_timesteps      | 90112        |
| train/                  |              |
|    approx_kl            | 0.0021622744 |
|    clip_fraction        | 0.0151       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.21        |
|    explained_variance   | -0.00152     |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0348       |
|    n_updates            | 60           |
|    policy_gradient_loss | -0.0149      |
|    value_loss           | 0.116        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.18e+03     |
|    ep_rew_mean          | 3.77e+03     |
| time/                   |              |
|    fps                  | 18618        |
|    iterations           | 12           |
|    time_elapsed         | 5            |
|    total_timesteps      | 98304        |
| train/                  |              |
|    approx_kl            | 0.0015323983 |
|    clip_fraction        | 0.0111       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.157       |
|    explained_variance   | 0.00773      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0349       |
|    n_updates            | 66           |
|    policy_gradient_loss | -0.0111      |
|    value_loss           | 0.111        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.18e+03     |
|    ep_rew_mean          | 3.77e+03     |
| time/                   |              |
|    fps                  | 18625        |
|    iterations           | 13           |
|    time_elapsed         | 5            |
|    total_timesteps      | 106496       |
| train/                  |              |
|    approx_kl            | 0.0011562344 |
|    clip_fraction        | 0.00865      |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.118       |
|    explained_variance   | 0.00527      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0403       |
|    n_updates            | 72           |
|    policy_gradient_loss | -0.00895     |
|    value_loss           | 0.104        |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 3.77e+03      |
| time/                   |               |
|    fps                  | 18634         |
|    iterations           | 14            |
|    time_elapsed         | 6             |
|    total_timesteps      | 114688        |
| train/                  |               |
|    approx_kl            | 0.00061776116 |
|    clip_fraction        | 0.00409       |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0891       |
|    explained_variance   | 0.0157        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0407        |
|    n_updates            | 78            |
|    policy_gradient_loss | -0.00559      |
|    value_loss           | 0.0977        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 4.99e+03      |
| time/                   |               |
|    fps                  | 18648         |
|    iterations           | 15            |
|    time_elapsed         | 6             |
|    total_timesteps      | 122880        |
| train/                  |               |
|    approx_kl            | 0.00034573482 |
|    clip_fraction        | 0.00216       |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0691       |
|    explained_variance   | 0.0255        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0373        |
|    n_updates            | 84            |
|    policy_gradient_loss | -0.00397      |
|    value_loss           | 0.0892        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 4.99e+03      |
| time/                   |               |
|    fps                  | 18663         |
|    iterations           | 16            |
|    time_elapsed         | 7             |
|    total_timesteps      | 131072        |
| train/                  |               |
|    approx_kl            | 0.00022995682 |
|    clip_fraction        | 0.000651      |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0551       |
|    explained_variance   | 0.0286        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0381        |
|    n_updates            | 90            |
|    policy_gradient_loss | -0.00296      |
|    value_loss           | 0.0921        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 4.99e+03      |
| time/                   |               |
|    fps                  | 18648         |
|    iterations           | 17            |
|    time_elapsed         | 7             |
|    total_timesteps      | 139264        |
| train/                  |               |
|    approx_kl            | 0.00013406997 |
|    clip_fraction        | 4.07e-05      |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0448       |
|    explained_variance   | 0.0343        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0414        |
|    n_updates            | 96            |
|    policy_gradient_loss | -0.00203      |
|    value_loss           | 0.0884        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 4.99e+03      |
| time/                   |               |
|    fps                  | 18621         |
|    iterations           | 18            |
|    time_elapsed         | 7             |
|    total_timesteps      | 147456        |
| train/                  |               |
|    approx_kl            | 7.4595744e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0374       |
|    explained_variance   | 0.0324        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0441        |
|    n_updates            | 102           |
|    policy_gradient_loss | -0.00135      |
|    value_loss           | 0.0879        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.18e+03     |
|    ep_rew_mean          | 4.99e+03     |
| time/                   |              |
|    fps                  | 18617        |
|    iterations           | 19           |
|    time_elapsed         | 8            |
|    total_timesteps      | 155648       |
| train/                  |              |
|    approx_kl            | 3.875704e-05 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0321      |
|    explained_variance   | 0.0401       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0416       |
|    n_updates            | 108          |
|    policy_gradient_loss | -0.000878    |
|    value_loss           | 0.0866       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 4.99e+03      |
| time/                   |               |
|    fps                  | 18597         |
|    iterations           | 20            |
|    time_elapsed         | 8             |
|    total_timesteps      | 163840        |
| train/                  |               |
|    approx_kl            | 3.0018899e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0282       |
|    explained_variance   | 0.0337        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0436        |
|    n_updates            | 114           |
|    policy_gradient_loss | -0.000737     |
|    value_loss           | 0.0887        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.18e+03     |
|    ep_rew_mean          | 4.99e+03     |
| time/                   |              |
|    fps                  | 18564        |
|    iterations           | 21           |
|    time_elapsed         | 9            |
|    total_timesteps      | 172032       |
| train/                  |              |
|    approx_kl            | 3.455513e-05 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.025       |
|    explained_variance   | 0.0426       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0435       |
|    n_updates            | 120          |
|    policy_gradient_loss | -0.000847    |
|    value_loss           | 0.0836       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 5.48e+03      |
| time/                   |               |
|    fps                  | 18559         |
|    iterations           | 22            |
|    time_elapsed         | 9             |
|    total_timesteps      | 180224        |
| train/                  |               |
|    approx_kl            | 1.8315484e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0221       |
|    explained_variance   | 0.042         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0419        |
|    n_updates            | 126           |
|    policy_gradient_loss | -0.000518     |
|    value_loss           | 0.0823        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 5.48e+03      |
| time/                   |               |
|    fps                  | 18548         |
|    iterations           | 23            |
|    time_elapsed         | 10            |
|    total_timesteps      | 188416        |
| train/                  |               |
|    approx_kl            | 1.2273245e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.02         |
|    explained_variance   | 0.0409        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0398        |
|    n_updates            | 132           |
|    policy_gradient_loss | -0.000405     |
|    value_loss           | 0.0833        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 5.48e+03      |
| time/                   |               |
|    fps                  | 18551         |
|    iterations           | 24            |
|    time_elapsed         | 10            |
|    total_timesteps      | 196608        |
| train/                  |               |
|    approx_kl            | 1.0170828e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0182       |
|    explained_variance   | 0.045         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0394        |
|    n_updates            | 138           |
|    policy_gradient_loss | -0.000344     |
|    value_loss           | 0.0855        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 5.48e+03      |
| time/                   |               |
|    fps                  | 18558         |
|    iterations           | 25            |
|    time_elapsed         | 11            |
|    total_timesteps      | 204800        |
| train/                  |               |
|    approx_kl            | 5.8873047e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0168       |
|    explained_variance   | 0.0435        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0421        |
|    n_updates            | 144           |
|    policy_gradient_loss | -0.000232     |
|    value_loss           | 0.0819        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 5.48e+03      |
| time/                   |               |
|    fps                  | 18558         |
|    iterations           | 26            |
|    time_elapsed         | 11            |
|    total_timesteps      | 212992        |
| train/                  |               |
|    approx_kl            | 6.1442624e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0155       |
|    explained_variance   | 0.0425        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0445        |
|    n_updates            | 150           |
|    policy_gradient_loss | -0.000263     |
|    value_loss           | 0.0854        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.18e+03     |
|    ep_rew_mean          | 5.48e+03     |
| time/                   |              |
|    fps                  | 18555        |
|    iterations           | 27           |
|    time_elapsed         | 11           |
|    total_timesteps      | 221184       |
| train/                  |              |
|    approx_kl            | 6.828108e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0144      |
|    explained_variance   | 0.0426       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0412       |
|    n_updates            | 156          |
|    policy_gradient_loss | -0.000282    |
|    value_loss           | 0.0846       |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.18e+03     |
|    ep_rew_mean          | 5.48e+03     |
| time/                   |              |
|    fps                  | 18535        |
|    iterations           | 28           |
|    time_elapsed         | 12           |
|    total_timesteps      | 229376       |
| train/                  |              |
|    approx_kl            | 3.765097e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0133      |
|    explained_variance   | 0.0581       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0402       |
|    n_updates            | 162          |
|    policy_gradient_loss | -0.000177    |
|    value_loss           | 0.0812       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 5.73e+03      |
| time/                   |               |
|    fps                  | 18534         |
|    iterations           | 29            |
|    time_elapsed         | 12            |
|    total_timesteps      | 237568        |
| train/                  |               |
|    approx_kl            | 2.3752364e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0125       |
|    explained_variance   | 0.053         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0448        |
|    n_updates            | 168           |
|    policy_gradient_loss | -0.00011      |
|    value_loss           | 0.0869        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.18e+03     |
|    ep_rew_mean          | 5.73e+03     |
| time/                   |              |
|    fps                  | 18533        |
|    iterations           | 30           |
|    time_elapsed         | 13           |
|    total_timesteps      | 245760       |
| train/                  |              |
|    approx_kl            | 2.428118e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0118      |
|    explained_variance   | 0.0523       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0394       |
|    n_updates            | 174          |
|    policy_gradient_loss | -0.000117    |
|    value_loss           | 0.0803       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 5.73e+03      |
| time/                   |               |
|    fps                  | 18541         |
|    iterations           | 31            |
|    time_elapsed         | 13            |
|    total_timesteps      | 253952        |
| train/                  |               |
|    approx_kl            | 2.7328788e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0112       |
|    explained_variance   | 0.0536        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0407        |
|    n_updates            | 180           |
|    policy_gradient_loss | -0.000136     |
|    value_loss           | 0.0809        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 5.73e+03      |
| time/                   |               |
|    fps                  | 18545         |
|    iterations           | 32            |
|    time_elapsed         | 14            |
|    total_timesteps      | 262144        |
| train/                  |               |
|    approx_kl            | 1.6658814e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0106       |
|    explained_variance   | 0.0655        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0403        |
|    n_updates            | 186           |
|    policy_gradient_loss | -8.95e-05     |
|    value_loss           | 0.0834        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.18e+03     |
|    ep_rew_mean          | 5.73e+03     |
| time/                   |              |
|    fps                  | 18530        |
|    iterations           | 33           |
|    time_elapsed         | 14           |
|    total_timesteps      | 270336       |
| train/                  |              |
|    approx_kl            | 1.401233e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0101      |
|    explained_variance   | 0.0625       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0404       |
|    n_updates            | 192          |
|    policy_gradient_loss | -7.73e-05    |
|    value_loss           | 0.0814       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 5.73e+03      |
| time/                   |               |
|    fps                  | 18532         |
|    iterations           | 34            |
|    time_elapsed         | 15            |
|    total_timesteps      | 278528        |
| train/                  |               |
|    approx_kl            | 1.1300799e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00964      |
|    explained_variance   | 0.0737        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.041         |
|    n_updates            | 198           |
|    policy_gradient_loss | -7.43e-05     |
|    value_loss           | 0.0832        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 5.73e+03      |
| time/                   |               |
|    fps                  | 18519         |
|    iterations           | 35            |
|    time_elapsed         | 15            |
|    total_timesteps      | 286720        |
| train/                  |               |
|    approx_kl            | 2.2381573e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00921      |
|    explained_variance   | 0.0745        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0399        |
|    n_updates            | 204           |
|    policy_gradient_loss | -0.000105     |
|    value_loss           | 0.0801        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 5.88e+03      |
| time/                   |               |
|    fps                  | 18516         |
|    iterations           | 36            |
|    time_elapsed         | 15            |
|    total_timesteps      | 294912        |
| train/                  |               |
|    approx_kl            | 5.2683754e-07 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00877      |
|    explained_variance   | 0.0777        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0413        |
|    n_updates            | 210           |
|    policy_gradient_loss | -4.58e-05     |
|    value_loss           | 0.08          |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.18e+03      |
|    ep_rew_mean          | 5.88e+03      |
| time/                   |               |
|    fps                  | 18525         |
|    iterations           | 37            |
|    time_elapsed         | 16            |
|    total_timesteps      | 303104        |
| train/                  |               |
|    approx_kl            | 3.3327524e-07 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00845      |
|    explained_variance   | 0.0866        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0401        |
|    n_updates            | 216           |
|    policy_gradient_loss | -3.14e-05     |
|    value_loss           | 0.0824        |
-------------------------------------------
[SAVED] bots/models/PPO_Trailing_Stop_Loss/ppo_stop_loss_selector_rl_stop_loss_training_LE=F.zip

[TRAIN] SI=F — rows: 7304, actions: [1.0, 2.0, 3.0, 4.0], envs: 8
Using cpu device
------------------------------
| time/              |       |
|    fps             | 20584 |
|    iterations      | 1     |
|    time_elapsed    | 0     |
|    total_timesteps | 8192  |
------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19634       |
|    iterations           | 2           |
|    time_elapsed         | 0           |
|    total_timesteps      | 16384       |
| train/                  |             |
|    approx_kl            | 0.011680173 |
|    clip_fraction        | 0.0786      |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.38       |
|    explained_variance   | -0.0463     |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0281      |
|    n_updates            | 6           |
|    policy_gradient_loss | -0.0604     |
|    value_loss           | 0.36        |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19174       |
|    iterations           | 3           |
|    time_elapsed         | 1           |
|    total_timesteps      | 24576       |
| train/                  |             |
|    approx_kl            | 0.015800383 |
|    clip_fraction        | 0.0911      |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.35       |
|    explained_variance   | -0.0382     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0147     |
|    n_updates            | 12          |
|    policy_gradient_loss | -0.0724     |
|    value_loss           | 0.267       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19146       |
|    iterations           | 4           |
|    time_elapsed         | 1           |
|    total_timesteps      | 32768       |
| train/                  |             |
|    approx_kl            | 0.022618053 |
|    clip_fraction        | 0.125       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.26       |
|    explained_variance   | -0.0249     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0365     |
|    n_updates            | 18          |
|    policy_gradient_loss | -0.089      |
|    value_loss           | 0.246       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19198       |
|    iterations           | 5           |
|    time_elapsed         | 2           |
|    total_timesteps      | 40960       |
| train/                  |             |
|    approx_kl            | 0.023785941 |
|    clip_fraction        | 0.117       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.11       |
|    explained_variance   | -0.0076     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0391     |
|    n_updates            | 24          |
|    policy_gradient_loss | -0.0906     |
|    value_loss           | 0.253       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19255       |
|    iterations           | 6           |
|    time_elapsed         | 2           |
|    total_timesteps      | 49152       |
| train/                  |             |
|    approx_kl            | 0.020738259 |
|    clip_fraction        | 0.106       |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.908      |
|    explained_variance   | -0.000927   |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0108     |
|    n_updates            | 30          |
|    policy_gradient_loss | -0.0767     |
|    value_loss           | 0.244       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19257       |
|    iterations           | 7           |
|    time_elapsed         | 2           |
|    total_timesteps      | 57344       |
| train/                  |             |
|    approx_kl            | 0.016834186 |
|    clip_fraction        | 0.0917      |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.702      |
|    explained_variance   | 0.00275     |
|    learning_rate        | 0.0003      |
|    loss                 | 0.00941     |
|    n_updates            | 36          |
|    policy_gradient_loss | -0.0602     |
|    value_loss           | 0.216       |
-----------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.3e+03     |
|    ep_rew_mean          | 3.7e+03     |
| time/                   |             |
|    fps                  | 19241       |
|    iterations           | 8           |
|    time_elapsed         | 3           |
|    total_timesteps      | 65536       |
| train/                  |             |
|    approx_kl            | 0.011759612 |
|    clip_fraction        | 0.0735      |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.512      |
|    explained_variance   | 0.00483     |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0281      |
|    n_updates            | 42          |
|    policy_gradient_loss | -0.0447     |
|    value_loss           | 0.186       |
-----------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 3.7e+03      |
| time/                   |              |
|    fps                  | 19242        |
|    iterations           | 9            |
|    time_elapsed         | 3            |
|    total_timesteps      | 73728        |
| train/                  |              |
|    approx_kl            | 0.0068010013 |
|    clip_fraction        | 0.0446       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.371       |
|    explained_variance   | 0.0134       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.036        |
|    n_updates            | 48           |
|    policy_gradient_loss | -0.031       |
|    value_loss           | 0.161        |
------------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.3e+03     |
|    ep_rew_mean          | 3.7e+03     |
| time/                   |             |
|    fps                  | 19241       |
|    iterations           | 10          |
|    time_elapsed         | 4           |
|    total_timesteps      | 81920       |
| train/                  |             |
|    approx_kl            | 0.003551888 |
|    clip_fraction        | 0.0264      |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.274      |
|    explained_variance   | 0.0225      |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0381      |
|    n_updates            | 54          |
|    policy_gradient_loss | -0.0201     |
|    value_loss           | 0.135       |
-----------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 3.7e+03      |
| time/                   |              |
|    fps                  | 19235        |
|    iterations           | 11           |
|    time_elapsed         | 4            |
|    total_timesteps      | 90112        |
| train/                  |              |
|    approx_kl            | 0.0022966224 |
|    clip_fraction        | 0.016        |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.203       |
|    explained_variance   | 0.0262       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.042        |
|    n_updates            | 60           |
|    policy_gradient_loss | -0.0134      |
|    value_loss           | 0.125        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 3.7e+03      |
| time/                   |              |
|    fps                  | 19223        |
|    iterations           | 12           |
|    time_elapsed         | 5            |
|    total_timesteps      | 98304        |
| train/                  |              |
|    approx_kl            | 0.0016589619 |
|    clip_fraction        | 0.012        |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.149       |
|    explained_variance   | 0.0423       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0393       |
|    n_updates            | 66           |
|    policy_gradient_loss | -0.0106      |
|    value_loss           | 0.112        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 3.7e+03      |
| time/                   |              |
|    fps                  | 19229        |
|    iterations           | 13           |
|    time_elapsed         | 5            |
|    total_timesteps      | 106496       |
| train/                  |              |
|    approx_kl            | 0.0012054963 |
|    clip_fraction        | 0.0085       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.11        |
|    explained_variance   | 0.051        |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0439       |
|    n_updates            | 72           |
|    policy_gradient_loss | -0.00789     |
|    value_loss           | 0.112        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 3.7e+03      |
| time/                   |              |
|    fps                  | 19215        |
|    iterations           | 14           |
|    time_elapsed         | 5            |
|    total_timesteps      | 114688       |
| train/                  |              |
|    approx_kl            | 0.0005791058 |
|    clip_fraction        | 0.00403      |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.082       |
|    explained_variance   | 0.0593       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0454       |
|    n_updates            | 78           |
|    policy_gradient_loss | -0.00492     |
|    value_loss           | 0.106        |
------------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.3e+03     |
|    ep_rew_mean          | 4.96e+03    |
| time/                   |             |
|    fps                  | 19204       |
|    iterations           | 15          |
|    time_elapsed         | 6           |
|    total_timesteps      | 122880      |
| train/                  |             |
|    approx_kl            | 0.000311509 |
|    clip_fraction        | 0.00161     |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.0642     |
|    explained_variance   | 0.073       |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0437      |
|    n_updates            | 84          |
|    policy_gradient_loss | -0.00317    |
|    value_loss           | 0.101       |
-----------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 4.96e+03      |
| time/                   |               |
|    fps                  | 19203         |
|    iterations           | 16            |
|    time_elapsed         | 6             |
|    total_timesteps      | 131072        |
| train/                  |               |
|    approx_kl            | 0.00018201688 |
|    clip_fraction        | 0.000448      |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0518       |
|    explained_variance   | 0.0933        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.043         |
|    n_updates            | 90            |
|    policy_gradient_loss | -0.00229      |
|    value_loss           | 0.098         |
-------------------------------------------
--------------------------------------------
| rollout/                |                |
|    ep_len_mean          | 7.3e+03        |
|    ep_rew_mean          | 4.96e+03       |
| time/                   |                |
|    fps                  | 19204          |
|    iterations           | 17             |
|    time_elapsed         | 7              |
|    total_timesteps      | 139264         |
| train/                  |                |
|    approx_kl            | 0.000119664204 |
|    clip_fraction        | 4.07e-05       |
|    clip_range           | 0.2            |
|    entropy_loss         | -0.0426        |
|    explained_variance   | 0.107          |
|    learning_rate        | 0.0003         |
|    loss                 | 0.0462         |
|    n_updates            | 96             |
|    policy_gradient_loss | -0.00171       |
|    value_loss           | 0.0961         |
--------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 4.96e+03     |
| time/                   |              |
|    fps                  | 19199        |
|    iterations           | 18           |
|    time_elapsed         | 7            |
|    total_timesteps      | 147456       |
| train/                  |              |
|    approx_kl            | 6.811674e-05 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0357      |
|    explained_variance   | 0.112        |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0456       |
|    n_updates            | 102          |
|    policy_gradient_loss | -0.00116     |
|    value_loss           | 0.0944       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 4.96e+03      |
| time/                   |               |
|    fps                  | 19202         |
|    iterations           | 19            |
|    time_elapsed         | 8             |
|    total_timesteps      | 155648        |
| train/                  |               |
|    approx_kl            | 3.3057244e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0307       |
|    explained_variance   | 0.106         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0441        |
|    n_updates            | 108           |
|    policy_gradient_loss | -0.00072      |
|    value_loss           | 0.0911        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 4.96e+03      |
| time/                   |               |
|    fps                  | 19204         |
|    iterations           | 20            |
|    time_elapsed         | 8             |
|    total_timesteps      | 163840        |
| train/                  |               |
|    approx_kl            | 2.7266338e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0272       |
|    explained_variance   | 0.109         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.046         |
|    n_updates            | 114           |
|    policy_gradient_loss | -0.000644     |
|    value_loss           | 0.094         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 4.96e+03      |
| time/                   |               |
|    fps                  | 19208         |
|    iterations           | 21            |
|    time_elapsed         | 8             |
|    total_timesteps      | 172032        |
| train/                  |               |
|    approx_kl            | 3.0745177e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0242       |
|    explained_variance   | 0.128         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.047         |
|    n_updates            | 120           |
|    policy_gradient_loss | -0.000681     |
|    value_loss           | 0.0954        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 5.45e+03     |
| time/                   |              |
|    fps                  | 19200        |
|    iterations           | 22           |
|    time_elapsed         | 9            |
|    total_timesteps      | 180224       |
| train/                  |              |
|    approx_kl            | 1.634036e-05 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0215      |
|    explained_variance   | 0.114        |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0436       |
|    n_updates            | 126          |
|    policy_gradient_loss | -0.000441    |
|    value_loss           | 0.0902       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.45e+03      |
| time/                   |               |
|    fps                  | 19195         |
|    iterations           | 23            |
|    time_elapsed         | 9             |
|    total_timesteps      | 188416        |
| train/                  |               |
|    approx_kl            | 1.0737844e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0195       |
|    explained_variance   | 0.114         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0453        |
|    n_updates            | 132           |
|    policy_gradient_loss | -0.00035      |
|    value_loss           | 0.0894        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.45e+03      |
| time/                   |               |
|    fps                  | 19190         |
|    iterations           | 24            |
|    time_elapsed         | 10            |
|    total_timesteps      | 196608        |
| train/                  |               |
|    approx_kl            | 1.4108438e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0177       |
|    explained_variance   | 0.123         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0442        |
|    n_updates            | 138           |
|    policy_gradient_loss | -0.00039      |
|    value_loss           | 0.0924        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.3e+03      |
|    ep_rew_mean          | 5.45e+03     |
| time/                   |              |
|    fps                  | 19184        |
|    iterations           | 25           |
|    time_elapsed         | 10           |
|    total_timesteps      | 204800       |
| train/                  |              |
|    approx_kl            | 5.295122e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0162      |
|    explained_variance   | 0.125        |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0405       |
|    n_updates            | 144          |
|    policy_gradient_loss | -0.00021     |
|    value_loss           | 0.0872       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.45e+03      |
| time/                   |               |
|    fps                  | 19182         |
|    iterations           | 26            |
|    time_elapsed         | 11            |
|    total_timesteps      | 212992        |
| train/                  |               |
|    approx_kl            | 6.7665824e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.015        |
|    explained_variance   | 0.136         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0436        |
|    n_updates            | 150           |
|    policy_gradient_loss | -0.000253     |
|    value_loss           | 0.0915        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.45e+03      |
| time/                   |               |
|    fps                  | 19184         |
|    iterations           | 27            |
|    time_elapsed         | 11            |
|    total_timesteps      | 221184        |
| train/                  |               |
|    approx_kl            | 4.8166985e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0139       |
|    explained_variance   | 0.13          |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0457        |
|    n_updates            | 156           |
|    policy_gradient_loss | -0.000206     |
|    value_loss           | 0.0892        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.45e+03      |
| time/                   |               |
|    fps                  | 19182         |
|    iterations           | 28            |
|    time_elapsed         | 11            |
|    total_timesteps      | 229376        |
| train/                  |               |
|    approx_kl            | 2.0192601e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0129       |
|    explained_variance   | 0.128         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0446        |
|    n_updates            | 162           |
|    policy_gradient_loss | -8.96e-05     |
|    value_loss           | 0.0886        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.7e+03       |
| time/                   |               |
|    fps                  | 19180         |
|    iterations           | 29            |
|    time_elapsed         | 12            |
|    total_timesteps      | 237568        |
| train/                  |               |
|    approx_kl            | 2.0791122e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0123       |
|    explained_variance   | 0.14          |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0446        |
|    n_updates            | 168           |
|    policy_gradient_loss | -0.000107     |
|    value_loss           | 0.0895        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.7e+03       |
| time/                   |               |
|    fps                  | 19179         |
|    iterations           | 30            |
|    time_elapsed         | 12            |
|    total_timesteps      | 245760        |
| train/                  |               |
|    approx_kl            | 3.0586962e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0116       |
|    explained_variance   | 0.14          |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0453        |
|    n_updates            | 174           |
|    policy_gradient_loss | -0.000145     |
|    value_loss           | 0.0917        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.7e+03       |
| time/                   |               |
|    fps                  | 19171         |
|    iterations           | 31            |
|    time_elapsed         | 13            |
|    total_timesteps      | 253952        |
| train/                  |               |
|    approx_kl            | 3.0131196e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0109       |
|    explained_variance   | 0.143         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.044         |
|    n_updates            | 180           |
|    policy_gradient_loss | -0.000143     |
|    value_loss           | 0.09          |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.7e+03       |
| time/                   |               |
|    fps                  | 19169         |
|    iterations           | 32            |
|    time_elapsed         | 13            |
|    total_timesteps      | 262144        |
| train/                  |               |
|    approx_kl            | 1.4135949e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0103       |
|    explained_variance   | 0.142         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0434        |
|    n_updates            | 186           |
|    policy_gradient_loss | -7.14e-05     |
|    value_loss           | 0.087         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.7e+03       |
| time/                   |               |
|    fps                  | 19155         |
|    iterations           | 33            |
|    time_elapsed         | 14            |
|    total_timesteps      | 270336        |
| train/                  |               |
|    approx_kl            | 1.2583987e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0098       |
|    explained_variance   | 0.14          |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0424        |
|    n_updates            | 192           |
|    policy_gradient_loss | -5.73e-05     |
|    value_loss           | 0.0863        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.7e+03       |
| time/                   |               |
|    fps                  | 19148         |
|    iterations           | 34            |
|    time_elapsed         | 14            |
|    total_timesteps      | 278528        |
| train/                  |               |
|    approx_kl            | 1.2177843e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00939      |
|    explained_variance   | 0.146         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0462        |
|    n_updates            | 198           |
|    policy_gradient_loss | -7.72e-05     |
|    value_loss           | 0.0898        |
-------------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.3e+03     |
|    ep_rew_mean          | 5.7e+03     |
| time/                   |             |
|    fps                  | 19138       |
|    iterations           | 35          |
|    time_elapsed         | 14          |
|    total_timesteps      | 286720      |
| train/                  |             |
|    approx_kl            | 2.76247e-06 |
|    clip_fraction        | 0           |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.00893    |
|    explained_variance   | 0.148       |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0404      |
|    n_updates            | 204         |
|    policy_gradient_loss | -0.000133   |
|    value_loss           | 0.0834      |
-----------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.85e+03      |
| time/                   |               |
|    fps                  | 19132         |
|    iterations           | 36            |
|    time_elapsed         | 15            |
|    total_timesteps      | 294912        |
| train/                  |               |
|    approx_kl            | 6.2915205e-07 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00845      |
|    explained_variance   | 0.146         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0459        |
|    n_updates            | 210           |
|    policy_gradient_loss | -4.4e-05      |
|    value_loss           | 0.0906        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.3e+03       |
|    ep_rew_mean          | 5.85e+03      |
| time/                   |               |
|    fps                  | 19114         |
|    iterations           | 37            |
|    time_elapsed         | 15            |
|    total_timesteps      | 303104        |
| train/                  |               |
|    approx_kl            | 2.8912473e-07 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00813      |
|    explained_variance   | 0.145         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0442        |
|    n_updates            | 216           |
|    policy_gradient_loss | -2.23e-05     |
|    value_loss           | 0.0869        |
-------------------------------------------
[SAVED] bots/models/PPO_Trailing_Stop_Loss/ppo_stop_loss_selector_rl_stop_loss_training_SI=F.zip

[TRAIN] ZB=F — rows: 7318, actions: [1.0, 2.0, 3.0, 4.0], envs: 8
Using cpu device
------------------------------
| time/              |       |
|    fps             | 21292 |
|    iterations      | 1     |
|    time_elapsed    | 0     |
|    total_timesteps | 8192  |
------------------------------
----------------------------------------
| time/                   |            |
|    fps                  | 19941      |
|    iterations           | 2          |
|    time_elapsed         | 0          |
|    total_timesteps      | 16384      |
| train/                  |            |
|    approx_kl            | 0.01522733 |
|    clip_fraction        | 0.104      |
|    clip_range           | 0.2        |
|    entropy_loss         | -1.38      |
|    explained_variance   | -0.0761    |
|    learning_rate        | 0.0003     |
|    loss                 | 0.00755    |
|    n_updates            | 6          |
|    policy_gradient_loss | -0.0634    |
|    value_loss           | 0.279      |
----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19397       |
|    iterations           | 3           |
|    time_elapsed         | 1           |
|    total_timesteps      | 24576       |
| train/                  |             |
|    approx_kl            | 0.020271031 |
|    clip_fraction        | 0.115       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.34       |
|    explained_variance   | -0.0343     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0227     |
|    n_updates            | 12          |
|    policy_gradient_loss | -0.0778     |
|    value_loss           | 0.239       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19143       |
|    iterations           | 4           |
|    time_elapsed         | 1           |
|    total_timesteps      | 32768       |
| train/                  |             |
|    approx_kl            | 0.025232496 |
|    clip_fraction        | 0.161       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.23       |
|    explained_variance   | -0.028      |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0329     |
|    n_updates            | 18          |
|    policy_gradient_loss | -0.0899     |
|    value_loss           | 0.248       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19083       |
|    iterations           | 5           |
|    time_elapsed         | 2           |
|    total_timesteps      | 40960       |
| train/                  |             |
|    approx_kl            | 0.019272462 |
|    clip_fraction        | 0.0698      |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.07       |
|    explained_variance   | -0.0213     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0195     |
|    n_updates            | 24          |
|    policy_gradient_loss | -0.0776     |
|    value_loss           | 0.257       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 18998       |
|    iterations           | 6           |
|    time_elapsed         | 2           |
|    total_timesteps      | 49152       |
| train/                  |             |
|    approx_kl            | 0.018699085 |
|    clip_fraction        | 0.102       |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.873      |
|    explained_variance   | -0.0155     |
|    learning_rate        | 0.0003      |
|    loss                 | 0.00927     |
|    n_updates            | 30          |
|    policy_gradient_loss | -0.0679     |
|    value_loss           | 0.247       |
-----------------------------------------
------------------------------------------
| time/                   |              |
|    fps                  | 18891        |
|    iterations           | 7            |
|    time_elapsed         | 3            |
|    total_timesteps      | 57344        |
| train/                  |              |
|    approx_kl            | 0.0145712085 |
|    clip_fraction        | 0.0891       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.674       |
|    explained_variance   | -0.0166      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0243       |
|    n_updates            | 36           |
|    policy_gradient_loss | -0.0529      |
|    value_loss           | 0.22         |
------------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.32e+03    |
|    ep_rew_mean          | 3.75e+03    |
| time/                   |             |
|    fps                  | 18827       |
|    iterations           | 8           |
|    time_elapsed         | 3           |
|    total_timesteps      | 65536       |
| train/                  |             |
|    approx_kl            | 0.009770615 |
|    clip_fraction        | 0.0624      |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.501      |
|    explained_variance   | -0.0154     |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0378      |
|    n_updates            | 42          |
|    policy_gradient_loss | -0.0391     |
|    value_loss           | 0.195       |
-----------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.32e+03     |
|    ep_rew_mean          | 3.75e+03     |
| time/                   |              |
|    fps                  | 18756        |
|    iterations           | 9            |
|    time_elapsed         | 3            |
|    total_timesteps      | 73728        |
| train/                  |              |
|    approx_kl            | 0.0058736634 |
|    clip_fraction        | 0.042        |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.372       |
|    explained_variance   | -0.0152      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0502       |
|    n_updates            | 48           |
|    policy_gradient_loss | -0.027       |
|    value_loss           | 0.184        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.32e+03     |
|    ep_rew_mean          | 3.75e+03     |
| time/                   |              |
|    fps                  | 18750        |
|    iterations           | 10           |
|    time_elapsed         | 4            |
|    total_timesteps      | 81920        |
| train/                  |              |
|    approx_kl            | 0.0033011725 |
|    clip_fraction        | 0.0225       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.279       |
|    explained_variance   | -0.0114      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0524       |
|    n_updates            | 54           |
|    policy_gradient_loss | -0.0183      |
|    value_loss           | 0.159        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.32e+03     |
|    ep_rew_mean          | 3.75e+03     |
| time/                   |              |
|    fps                  | 18760        |
|    iterations           | 11           |
|    time_elapsed         | 4            |
|    total_timesteps      | 90112        |
| train/                  |              |
|    approx_kl            | 0.0021294355 |
|    clip_fraction        | 0.0149       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.209       |
|    explained_variance   | -0.0113      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.056        |
|    n_updates            | 60           |
|    policy_gradient_loss | -0.012       |
|    value_loss           | 0.149        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.32e+03     |
|    ep_rew_mean          | 3.75e+03     |
| time/                   |              |
|    fps                  | 18707        |
|    iterations           | 12           |
|    time_elapsed         | 5            |
|    total_timesteps      | 98304        |
| train/                  |              |
|    approx_kl            | 0.0015405614 |
|    clip_fraction        | 0.0111       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.157       |
|    explained_variance   | -0.0077      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0574       |
|    n_updates            | 66           |
|    policy_gradient_loss | -0.00892     |
|    value_loss           | 0.142        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.32e+03     |
|    ep_rew_mean          | 3.75e+03     |
| time/                   |              |
|    fps                  | 18671        |
|    iterations           | 13           |
|    time_elapsed         | 5            |
|    total_timesteps      | 106496       |
| train/                  |              |
|    approx_kl            | 0.0011109535 |
|    clip_fraction        | 0.00863      |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.118       |
|    explained_variance   | -0.00729     |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0545       |
|    n_updates            | 72           |
|    policy_gradient_loss | -0.00722     |
|    value_loss           | 0.136        |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.32e+03     |
|    ep_rew_mean          | 3.75e+03     |
| time/                   |              |
|    fps                  | 18632        |
|    iterations           | 14           |
|    time_elapsed         | 6            |
|    total_timesteps      | 114688       |
| train/                  |              |
|    approx_kl            | 0.0004946777 |
|    clip_fraction        | 0.00315      |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0904      |
|    explained_variance   | -0.00242     |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0573       |
|    n_updates            | 78           |
|    policy_gradient_loss | -0.00423     |
|    value_loss           | 0.127        |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 4.89e+03      |
| time/                   |               |
|    fps                  | 18608         |
|    iterations           | 15            |
|    time_elapsed         | 6             |
|    total_timesteps      | 122880        |
| train/                  |               |
|    approx_kl            | 0.00027982748 |
|    clip_fraction        | 0.000712      |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.072        |
|    explained_variance   | -0.00556      |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0572        |
|    n_updates            | 84            |
|    policy_gradient_loss | -0.00288      |
|    value_loss           | 0.13          |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 4.89e+03      |
| time/                   |               |
|    fps                  | 18590         |
|    iterations           | 16            |
|    time_elapsed         | 7             |
|    total_timesteps      | 131072        |
| train/                  |               |
|    approx_kl            | 0.00023075184 |
|    clip_fraction        | 0.000427      |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0585       |
|    explained_variance   | -0.00351      |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0624        |
|    n_updates            | 90            |
|    policy_gradient_loss | -0.00251      |
|    value_loss           | 0.131         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 4.89e+03      |
| time/                   |               |
|    fps                  | 18603         |
|    iterations           | 17            |
|    time_elapsed         | 7             |
|    total_timesteps      | 139264        |
| train/                  |               |
|    approx_kl            | 0.00011884098 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0482       |
|    explained_variance   | 0.00375       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.062         |
|    n_updates            | 96            |
|    policy_gradient_loss | -0.00153      |
|    value_loss           | 0.125         |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.32e+03     |
|    ep_rew_mean          | 4.89e+03     |
| time/                   |              |
|    fps                  | 18614        |
|    iterations           | 18           |
|    time_elapsed         | 7            |
|    total_timesteps      | 147456       |
| train/                  |              |
|    approx_kl            | 6.558176e-05 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.041       |
|    explained_variance   | 0.0343       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0574       |
|    n_updates            | 102          |
|    policy_gradient_loss | -0.00106     |
|    value_loss           | 0.12         |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.32e+03     |
|    ep_rew_mean          | 4.89e+03     |
| time/                   |              |
|    fps                  | 18591        |
|    iterations           | 19           |
|    time_elapsed         | 8            |
|    total_timesteps      | 155648       |
| train/                  |              |
|    approx_kl            | 3.759037e-05 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0357      |
|    explained_variance   | 0.0481       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0543       |
|    n_updates            | 108          |
|    policy_gradient_loss | -0.000736    |
|    value_loss           | 0.116        |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 4.89e+03      |
| time/                   |               |
|    fps                  | 18594         |
|    iterations           | 20            |
|    time_elapsed         | 8             |
|    total_timesteps      | 163840        |
| train/                  |               |
|    approx_kl            | 2.6363923e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0318       |
|    explained_variance   | 0.0569        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0592        |
|    n_updates            | 114           |
|    policy_gradient_loss | -0.000576     |
|    value_loss           | 0.116         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 4.89e+03      |
| time/                   |               |
|    fps                  | 18607         |
|    iterations           | 21            |
|    time_elapsed         | 9             |
|    total_timesteps      | 172032        |
| train/                  |               |
|    approx_kl            | 2.6332033e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0285       |
|    explained_variance   | 0.0623        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0611        |
|    n_updates            | 120           |
|    policy_gradient_loss | -0.000551     |
|    value_loss           | 0.12          |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 5.34e+03      |
| time/                   |               |
|    fps                  | 18610         |
|    iterations           | 22            |
|    time_elapsed         | 9             |
|    total_timesteps      | 180224        |
| train/                  |               |
|    approx_kl            | 1.4799829e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0258       |
|    explained_variance   | 0.0652        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.057         |
|    n_updates            | 126           |
|    policy_gradient_loss | -0.000354     |
|    value_loss           | 0.117         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 5.34e+03      |
| time/                   |               |
|    fps                  | 18586         |
|    iterations           | 23            |
|    time_elapsed         | 10            |
|    total_timesteps      | 188416        |
| train/                  |               |
|    approx_kl            | 1.2226003e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0236       |
|    explained_variance   | 0.0696        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0591        |
|    n_updates            | 132           |
|    policy_gradient_loss | -0.000342     |
|    value_loss           | 0.115         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 5.34e+03      |
| time/                   |               |
|    fps                  | 18590         |
|    iterations           | 24            |
|    time_elapsed         | 10            |
|    total_timesteps      | 196608        |
| train/                  |               |
|    approx_kl            | 1.0287455e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0217       |
|    explained_variance   | 0.0693        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0586        |
|    n_updates            | 138           |
|    policy_gradient_loss | -0.00031      |
|    value_loss           | 0.117         |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.32e+03     |
|    ep_rew_mean          | 5.34e+03     |
| time/                   |              |
|    fps                  | 18581        |
|    iterations           | 25           |
|    time_elapsed         | 11           |
|    total_timesteps      | 204800       |
| train/                  |              |
|    approx_kl            | 5.608439e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.02        |
|    explained_variance   | 0.0797       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0547       |
|    n_updates            | 144          |
|    policy_gradient_loss | -0.000197    |
|    value_loss           | 0.113        |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 5.34e+03      |
| time/                   |               |
|    fps                  | 18579         |
|    iterations           | 26            |
|    time_elapsed         | 11            |
|    total_timesteps      | 212992        |
| train/                  |               |
|    approx_kl            | 6.1146056e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0187       |
|    explained_variance   | 0.0833        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0564        |
|    n_updates            | 150           |
|    policy_gradient_loss | -0.00021      |
|    value_loss           | 0.114         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 5.34e+03      |
| time/                   |               |
|    fps                  | 18575         |
|    iterations           | 27            |
|    time_elapsed         | 11            |
|    total_timesteps      | 221184        |
| train/                  |               |
|    approx_kl            | 7.0261594e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0174       |
|    explained_variance   | 0.0822        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0565        |
|    n_updates            | 156           |
|    policy_gradient_loss | -0.000242     |
|    value_loss           | 0.112         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 5.34e+03      |
| time/                   |               |
|    fps                  | 18563         |
|    iterations           | 28            |
|    time_elapsed         | 12            |
|    total_timesteps      | 229376        |
| train/                  |               |
|    approx_kl            | 5.0583258e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0161       |
|    explained_variance   | 0.09          |
|    learning_rate        | 0.0003        |
|    loss                 | 0.056         |
|    n_updates            | 162           |
|    policy_gradient_loss | -0.000163     |
|    value_loss           | 0.114         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 5.57e+03      |
| time/                   |               |
|    fps                  | 18563         |
|    iterations           | 29            |
|    time_elapsed         | 12            |
|    total_timesteps      | 237568        |
| train/                  |               |
|    approx_kl            | 2.6294947e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0151       |
|    explained_variance   | 0.091         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0557        |
|    n_updates            | 168           |
|    policy_gradient_loss | -0.00011      |
|    value_loss           | 0.112         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 5.57e+03      |
| time/                   |               |
|    fps                  | 18558         |
|    iterations           | 30            |
|    time_elapsed         | 13            |
|    total_timesteps      | 245760        |
| train/                  |               |
|    approx_kl            | 3.5281264e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0143       |
|    explained_variance   | 0.0958        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0547        |
|    n_updates            | 174           |
|    policy_gradient_loss | -0.000149     |
|    value_loss           | 0.11          |
-------------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.32e+03    |
|    ep_rew_mean          | 5.57e+03    |
| time/                   |             |
|    fps                  | 18559       |
|    iterations           | 31          |
|    time_elapsed         | 13          |
|    total_timesteps      | 253952      |
| train/                  |             |
|    approx_kl            | 4.21788e-06 |
|    clip_fraction        | 0           |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.0134     |
|    explained_variance   | 0.0994      |
|    learning_rate        | 0.0003      |
|    loss                 | 0.053       |
|    n_updates            | 180         |
|    policy_gradient_loss | -0.000152   |
|    value_loss           | 0.109       |
-----------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 5.57e+03      |
| time/                   |               |
|    fps                  | 18561         |
|    iterations           | 32            |
|    time_elapsed         | 14            |
|    total_timesteps      | 262144        |
| train/                  |               |
|    approx_kl            | 1.4121251e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0127       |
|    explained_variance   | 0.105         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0567        |
|    n_updates            | 186           |
|    policy_gradient_loss | -7.27e-05     |
|    value_loss           | 0.113         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 5.57e+03      |
| time/                   |               |
|    fps                  | 18563         |
|    iterations           | 33            |
|    time_elapsed         | 14            |
|    total_timesteps      | 270336        |
| train/                  |               |
|    approx_kl            | 1.9317595e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0121       |
|    explained_variance   | 0.101         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0521        |
|    n_updates            | 192           |
|    policy_gradient_loss | -9.67e-05     |
|    value_loss           | 0.107         |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 5.57e+03      |
| time/                   |               |
|    fps                  | 18572         |
|    iterations           | 34            |
|    time_elapsed         | 14            |
|    total_timesteps      | 278528        |
| train/                  |               |
|    approx_kl            | 1.5125042e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0115       |
|    explained_variance   | 0.103         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0553        |
|    n_updates            | 198           |
|    policy_gradient_loss | -7.99e-05     |
|    value_loss           | 0.113         |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.32e+03     |
|    ep_rew_mean          | 5.57e+03     |
| time/                   |              |
|    fps                  | 18571        |
|    iterations           | 35           |
|    time_elapsed         | 15           |
|    total_timesteps      | 286720       |
| train/                  |              |
|    approx_kl            | 2.827801e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0109      |
|    explained_variance   | 0.107        |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0552       |
|    n_updates            | 204          |
|    policy_gradient_loss | -0.000127    |
|    value_loss           | 0.11         |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.32e+03      |
|    ep_rew_mean          | 5.71e+03      |
| time/                   |               |
|    fps                  | 18559         |
|    iterations           | 36            |
|    time_elapsed         | 15            |
|    total_timesteps      | 294912        |
| train/                  |               |
|    approx_kl            | 5.6750287e-07 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0104       |
|    explained_variance   | 0.114         |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0529        |
|    n_updates            | 210           |
|    policy_gradient_loss | -3.71e-05     |
|    value_loss           | 0.11          |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.32e+03     |
|    ep_rew_mean          | 5.71e+03     |
| time/                   |              |
|    fps                  | 18558        |
|    iterations           | 37           |
|    time_elapsed         | 16           |
|    total_timesteps      | 303104       |
| train/                  |              |
|    approx_kl            | 4.063986e-07 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.00999     |
|    explained_variance   | 0.11         |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0571       |
|    n_updates            | 216          |
|    policy_gradient_loss | -3.3e-05     |
|    value_loss           | 0.111        |
------------------------------------------
[SAVED] bots/models/PPO_Trailing_Stop_Loss/ppo_stop_loss_selector_rl_stop_loss_training_ZB=F.zip

[TRAIN] ZS=F — rows: 7328, actions: [1.0, 2.0, 3.0, 4.0], envs: 8
Using cpu device
------------------------------
| time/              |       |
|    fps             | 21512 |
|    iterations      | 1     |
|    time_elapsed    | 0     |
|    total_timesteps | 8192  |
------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 20375       |
|    iterations           | 2           |
|    time_elapsed         | 0           |
|    total_timesteps      | 16384       |
| train/                  |             |
|    approx_kl            | 0.014207177 |
|    clip_fraction        | 0.104       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.38       |
|    explained_variance   | -0.129      |
|    learning_rate        | 0.0003      |
|    loss                 | 0.231       |
|    n_updates            | 6           |
|    policy_gradient_loss | -0.068      |
|    value_loss           | 0.911       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19870       |
|    iterations           | 3           |
|    time_elapsed         | 1           |
|    total_timesteps      | 24576       |
| train/                  |             |
|    approx_kl            | 0.014300158 |
|    clip_fraction        | 0.0844      |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.35       |
|    explained_variance   | -0.375      |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0897      |
|    n_updates            | 12          |
|    policy_gradient_loss | -0.0641     |
|    value_loss           | 0.576       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19533       |
|    iterations           | 4           |
|    time_elapsed         | 1           |
|    total_timesteps      | 32768       |
| train/                  |             |
|    approx_kl            | 0.023877975 |
|    clip_fraction        | 0.127       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.26       |
|    explained_variance   | -0.392      |
|    learning_rate        | 0.0003      |
|    loss                 | 0.00698     |
|    n_updates            | 18          |
|    policy_gradient_loss | -0.0783     |
|    value_loss           | 0.362       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19395       |
|    iterations           | 5           |
|    time_elapsed         | 2           |
|    total_timesteps      | 40960       |
| train/                  |             |
|    approx_kl            | 0.034484014 |
|    clip_fraction        | 0.244       |
|    clip_range           | 0.2         |
|    entropy_loss         | -1.08       |
|    explained_variance   | -0.212      |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0241     |
|    n_updates            | 24          |
|    policy_gradient_loss | -0.0971     |
|    value_loss           | 0.294       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19351       |
|    iterations           | 6           |
|    time_elapsed         | 2           |
|    total_timesteps      | 49152       |
| train/                  |             |
|    approx_kl            | 0.026748445 |
|    clip_fraction        | 0.126       |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.844      |
|    explained_variance   | -0.0848     |
|    learning_rate        | 0.0003      |
|    loss                 | -0.0154     |
|    n_updates            | 30          |
|    policy_gradient_loss | -0.0809     |
|    value_loss           | 0.244       |
-----------------------------------------
-----------------------------------------
| time/                   |             |
|    fps                  | 19309       |
|    iterations           | 7           |
|    time_elapsed         | 2           |
|    total_timesteps      | 57344       |
| train/                  |             |
|    approx_kl            | 0.020989873 |
|    clip_fraction        | 0.107       |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.598      |
|    explained_variance   | -0.0682     |
|    learning_rate        | 0.0003      |
|    loss                 | 0.00901     |
|    n_updates            | 36          |
|    policy_gradient_loss | -0.0623     |
|    value_loss           | 0.199       |
-----------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.33e+03    |
|    ep_rew_mean          | 3.94e+03    |
| time/                   |             |
|    fps                  | 19293       |
|    iterations           | 8           |
|    time_elapsed         | 3           |
|    total_timesteps      | 65536       |
| train/                  |             |
|    approx_kl            | 0.011593575 |
|    clip_fraction        | 0.0672      |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.405      |
|    explained_variance   | -0.043      |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0209      |
|    n_updates            | 42          |
|    policy_gradient_loss | -0.0423     |
|    value_loss           | 0.159       |
-----------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 3.94e+03     |
| time/                   |              |
|    fps                  | 19215        |
|    iterations           | 9            |
|    time_elapsed         | 3            |
|    total_timesteps      | 73728        |
| train/                  |              |
|    approx_kl            | 0.0055017713 |
|    clip_fraction        | 0.0371       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.279       |
|    explained_variance   | -0.0461      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.024        |
|    n_updates            | 48           |
|    policy_gradient_loss | -0.0277      |
|    value_loss           | 0.129        |
------------------------------------------
-----------------------------------------
| rollout/                |             |
|    ep_len_mean          | 7.33e+03    |
|    ep_rew_mean          | 3.94e+03    |
| time/                   |             |
|    fps                  | 19197       |
|    iterations           | 10          |
|    time_elapsed         | 4           |
|    total_timesteps      | 81920       |
| train/                  |             |
|    approx_kl            | 0.002933262 |
|    clip_fraction        | 0.0188      |
|    clip_range           | 0.2         |
|    entropy_loss         | -0.199      |
|    explained_variance   | -0.0312     |
|    learning_rate        | 0.0003      |
|    loss                 | 0.0287      |
|    n_updates            | 54          |
|    policy_gradient_loss | -0.0172     |
|    value_loss           | 0.107       |
-----------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 3.94e+03     |
| time/                   |              |
|    fps                  | 19141        |
|    iterations           | 11           |
|    time_elapsed         | 4            |
|    total_timesteps      | 90112        |
| train/                  |              |
|    approx_kl            | 0.0017655796 |
|    clip_fraction        | 0.0122       |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.142       |
|    explained_variance   | -0.0372      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.031        |
|    n_updates            | 60           |
|    policy_gradient_loss | -0.0117      |
|    value_loss           | 0.0968       |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 3.94e+03     |
| time/                   |              |
|    fps                  | 19095        |
|    iterations           | 12           |
|    time_elapsed         | 5            |
|    total_timesteps      | 98304        |
| train/                  |              |
|    approx_kl            | 0.0011323919 |
|    clip_fraction        | 0.00791      |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.102       |
|    explained_variance   | -0.0306      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0334       |
|    n_updates            | 66           |
|    policy_gradient_loss | -0.00803     |
|    value_loss           | 0.0909       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 3.94e+03      |
| time/                   |               |
|    fps                  | 19046         |
|    iterations           | 13            |
|    time_elapsed         | 5             |
|    total_timesteps      | 106496        |
| train/                  |               |
|    approx_kl            | 0.00066238345 |
|    clip_fraction        | 0.00527       |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0745       |
|    explained_variance   | -0.0263       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0346        |
|    n_updates            | 72            |
|    policy_gradient_loss | -0.00586      |
|    value_loss           | 0.0865        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 3.94e+03      |
| time/                   |               |
|    fps                  | 19025         |
|    iterations           | 14            |
|    time_elapsed         | 6             |
|    total_timesteps      | 114688        |
| train/                  |               |
|    approx_kl            | 0.00038536388 |
|    clip_fraction        | 0.00264       |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0564       |
|    explained_variance   | -0.0132       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0342        |
|    n_updates            | 78            |
|    policy_gradient_loss | -0.00408      |
|    value_loss           | 0.0795        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.26e+03      |
| time/                   |               |
|    fps                  | 19025         |
|    iterations           | 15            |
|    time_elapsed         | 6             |
|    total_timesteps      | 122880        |
| train/                  |               |
|    approx_kl            | 0.00018762345 |
|    clip_fraction        | 0.000997      |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.044        |
|    explained_variance   | -0.00609      |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0339        |
|    n_updates            | 84            |
|    policy_gradient_loss | -0.00253      |
|    value_loss           | 0.0758        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.26e+03      |
| time/                   |               |
|    fps                  | 18979         |
|    iterations           | 16            |
|    time_elapsed         | 6             |
|    total_timesteps      | 131072        |
| train/                  |               |
|    approx_kl            | 8.1062724e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0358       |
|    explained_variance   | -0.0103       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0331        |
|    n_updates            | 90            |
|    policy_gradient_loss | -0.00142      |
|    value_loss           | 0.0735        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 5.26e+03     |
| time/                   |              |
|    fps                  | 18976        |
|    iterations           | 17           |
|    time_elapsed         | 7            |
|    total_timesteps      | 139264       |
| train/                  |              |
|    approx_kl            | 8.631839e-05 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0298      |
|    explained_variance   | -0.00115     |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0335       |
|    n_updates            | 96           |
|    policy_gradient_loss | -0.00155     |
|    value_loss           | 0.0751       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.26e+03      |
| time/                   |               |
|    fps                  | 18955         |
|    iterations           | 18            |
|    time_elapsed         | 7             |
|    total_timesteps      | 147456        |
| train/                  |               |
|    approx_kl            | 4.1890984e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.025        |
|    explained_variance   | -0.00811      |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0365        |
|    n_updates            | 102           |
|    policy_gradient_loss | -0.000898     |
|    value_loss           | 0.0766        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.26e+03      |
| time/                   |               |
|    fps                  | 18902         |
|    iterations           | 19            |
|    time_elapsed         | 8             |
|    total_timesteps      | 155648        |
| train/                  |               |
|    approx_kl            | 1.7873477e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0216       |
|    explained_variance   | 0.00054       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0364        |
|    n_updates            | 108           |
|    policy_gradient_loss | -0.000502     |
|    value_loss           | 0.0746        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.26e+03      |
| time/                   |               |
|    fps                  | 18881         |
|    iterations           | 20            |
|    time_elapsed         | 8             |
|    total_timesteps      | 163840        |
| train/                  |               |
|    approx_kl            | 1.8387327e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0192       |
|    explained_variance   | 0.00147       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0364        |
|    n_updates            | 114           |
|    policy_gradient_loss | -0.000533     |
|    value_loss           | 0.0762        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.26e+03      |
| time/                   |               |
|    fps                  | 18903         |
|    iterations           | 21            |
|    time_elapsed         | 9             |
|    total_timesteps      | 172032        |
| train/                  |               |
|    approx_kl            | 2.0283813e-05 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0171       |
|    explained_variance   | 0.00338       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0325        |
|    n_updates            | 120           |
|    policy_gradient_loss | -0.00056      |
|    value_loss           | 0.0684        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 5.75e+03     |
| time/                   |              |
|    fps                  | 18922        |
|    iterations           | 22           |
|    time_elapsed         | 9            |
|    total_timesteps      | 180224       |
| train/                  |              |
|    approx_kl            | 8.371084e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0153      |
|    explained_variance   | 0.00137      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0368       |
|    n_updates            | 126          |
|    policy_gradient_loss | -0.000265    |
|    value_loss           | 0.0756       |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 5.75e+03     |
| time/                   |              |
|    fps                  | 18932        |
|    iterations           | 23           |
|    time_elapsed         | 9            |
|    total_timesteps      | 188416       |
| train/                  |              |
|    approx_kl            | 6.709728e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.014       |
|    explained_variance   | 0.00267      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0335       |
|    n_updates            | 132          |
|    policy_gradient_loss | -0.000257    |
|    value_loss           | 0.0697       |
------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 5.75e+03     |
| time/                   |              |
|    fps                  | 18930        |
|    iterations           | 24           |
|    time_elapsed         | 10           |
|    total_timesteps      | 196608       |
| train/                  |              |
|    approx_kl            | 4.584166e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0129      |
|    explained_variance   | 0.0025       |
|    learning_rate        | 0.0003       |
|    loss                 | 0.037        |
|    n_updates            | 138          |
|    policy_gradient_loss | -0.000172    |
|    value_loss           | 0.073        |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.75e+03      |
| time/                   |               |
|    fps                  | 18920         |
|    iterations           | 25            |
|    time_elapsed         | 10            |
|    total_timesteps      | 204800        |
| train/                  |               |
|    approx_kl            | 2.7833157e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.012        |
|    explained_variance   | 1.98e-05      |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0354        |
|    n_updates            | 144           |
|    policy_gradient_loss | -0.000146     |
|    value_loss           | 0.0714        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.75e+03      |
| time/                   |               |
|    fps                  | 18884         |
|    iterations           | 26            |
|    time_elapsed         | 11            |
|    total_timesteps      | 212992        |
| train/                  |               |
|    approx_kl            | 5.9275335e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.0112       |
|    explained_variance   | 0.0014        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0335        |
|    n_updates            | 150           |
|    policy_gradient_loss | -0.000243     |
|    value_loss           | 0.0737        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 5.75e+03     |
| time/                   |              |
|    fps                  | 18876        |
|    iterations           | 27           |
|    time_elapsed         | 11           |
|    total_timesteps      | 221184       |
| train/                  |              |
|    approx_kl            | 4.291527e-06 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.0103      |
|    explained_variance   | 0.00667      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.0339       |
|    n_updates            | 156          |
|    policy_gradient_loss | -0.00019     |
|    value_loss           | 0.0726       |
------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 5.75e+03      |
| time/                   |               |
|    fps                  | 18843         |
|    iterations           | 28            |
|    time_elapsed         | 12            |
|    total_timesteps      | 229376        |
| train/                  |               |
|    approx_kl            | 1.7408165e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00959      |
|    explained_variance   | 0.00327       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0371        |
|    n_updates            | 162           |
|    policy_gradient_loss | -9.85e-05     |
|    value_loss           | 0.0749        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6e+03         |
| time/                   |               |
|    fps                  | 18813         |
|    iterations           | 29            |
|    time_elapsed         | 12            |
|    total_timesteps      | 237568        |
| train/                  |               |
|    approx_kl            | 1.7778948e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00904      |
|    explained_variance   | 0.0011        |
|    learning_rate        | 0.0003        |
|    loss                 | 0.037         |
|    n_updates            | 168           |
|    policy_gradient_loss | -9.94e-05     |
|    value_loss           | 0.0748        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6e+03         |
| time/                   |               |
|    fps                  | 18803         |
|    iterations           | 30            |
|    time_elapsed         | 13            |
|    total_timesteps      | 245760        |
| train/                  |               |
|    approx_kl            | 2.6665512e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00853      |
|    explained_variance   | 0.00209       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0329        |
|    n_updates            | 174           |
|    policy_gradient_loss | -0.000138     |
|    value_loss           | 0.0698        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6e+03         |
| time/                   |               |
|    fps                  | 18803         |
|    iterations           | 31            |
|    time_elapsed         | 13            |
|    total_timesteps      | 253952        |
| train/                  |               |
|    approx_kl            | 2.8003778e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00797      |
|    explained_variance   | 0.00326       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0376        |
|    n_updates            | 180           |
|    policy_gradient_loss | -0.000142     |
|    value_loss           | 0.0735        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6e+03         |
| time/                   |               |
|    fps                  | 18805         |
|    iterations           | 32            |
|    time_elapsed         | 13            |
|    total_timesteps      | 262144        |
| train/                  |               |
|    approx_kl            | 1.6040431e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00745      |
|    explained_variance   | 0.00265       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.038         |
|    n_updates            | 186           |
|    policy_gradient_loss | -9.49e-05     |
|    value_loss           | 0.0737        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6e+03         |
| time/                   |               |
|    fps                  | 18804         |
|    iterations           | 33            |
|    time_elapsed         | 14            |
|    total_timesteps      | 270336        |
| train/                  |               |
|    approx_kl            | 1.4998805e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00702      |
|    explained_variance   | 0.00355       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0353        |
|    n_updates            | 192           |
|    policy_gradient_loss | -8.87e-05     |
|    value_loss           | 0.0714        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6e+03         |
| time/                   |               |
|    fps                  | 18804         |
|    iterations           | 34            |
|    time_elapsed         | 14            |
|    total_timesteps      | 278528        |
| train/                  |               |
|    approx_kl            | 1.6422127e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00664      |
|    explained_variance   | 0.00246       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0384        |
|    n_updates            | 198           |
|    policy_gradient_loss | -8.98e-05     |
|    value_loss           | 0.0732        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6e+03         |
| time/                   |               |
|    fps                  | 18800         |
|    iterations           | 35            |
|    time_elapsed         | 15            |
|    total_timesteps      | 286720        |
| train/                  |               |
|    approx_kl            | 1.0164658e-06 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00631      |
|    explained_variance   | 0.00373       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0363        |
|    n_updates            | 204           |
|    policy_gradient_loss | -6.71e-05     |
|    value_loss           | 0.0719        |
-------------------------------------------
-------------------------------------------
| rollout/                |               |
|    ep_len_mean          | 7.33e+03      |
|    ep_rew_mean          | 6.15e+03      |
| time/                   |               |
|    fps                  | 18799         |
|    iterations           | 36            |
|    time_elapsed         | 15            |
|    total_timesteps      | 294912        |
| train/                  |               |
|    approx_kl            | 2.5571353e-07 |
|    clip_fraction        | 0             |
|    clip_range           | 0.2           |
|    entropy_loss         | -0.00602      |
|    explained_variance   | 0.00436       |
|    learning_rate        | 0.0003        |
|    loss                 | 0.0366        |
|    n_updates            | 210           |
|    policy_gradient_loss | -2.64e-05     |
|    value_loss           | 0.0706        |
-------------------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 7.33e+03     |
|    ep_rew_mean          | 6.15e+03     |
| time/                   |              |
|    fps                  | 18794        |
|    iterations           | 37           |
|    time_elapsed         | 16           |
|    total_timesteps      | 303104       |
| train/                  |              |
|    approx_kl            | 2.804154e-07 |
|    clip_fraction        | 0            |
|    clip_range           | 0.2          |
|    entropy_loss         | -0.00582     |
|    explained_variance   | 0.00292      |
|    learning_rate        | 0.0003       |
|    loss                 | 0.04         |
|    n_updates            | 216          |
|    policy_gradient_loss | -2.38e-05    |
|    value_loss           | 0.0768       |
------------------------------------------
[SAVED] bots/models/PPO_Trailing_Stop_Loss/ppo_stop_loss_selector_rl_stop_loss_training_ZS=F.zip

✅ Done: 8/8 models saved to bots/models/PPO_Trailing_Stop_Loss

Build the PPO RL exit strategy¶

In [15]:
# ML Trailing Stop Loss Exits
PPO_Models_Dir = "bots/models/PPO_Trailing_Stop_Loss"

# ML Trailing Stop Loss using PPO or LSTM models
exit_strategy = RLTrailingATRExit(
    model_dir=PPO_Models_Dir,
    fallback_multiple=3.0,   # used if a symbol has no model or SB3 isn't available
    ema_span=21,             # use 21 by default; you can sync this to your bot's EMA below
    debug=False,             # set True to print load/inference fallbacks
)

Build the bot with the new exit strategy¶

In [16]:
bot = TrendFollowingBot(
    exit_strategy=exit_strategy,
    base_risk_percent=0.01,
    enforce_sessions=False,
    flatten_before_maintenance=True,
    enable_online_learning=False
)

Initialize engine and environment¶

In [17]:
config_path = "backtest_configs/backtest_config_10_yrs.yaml"

api = BacktesterEngine(config_path=config_path)
api.connect()

env = TradingEnvironment()
env.set_api(api)
env.set_bot(bot)

# Initial indicator compute happens inside TradingEnvironment on connect.
print('Assets:', env.get_asset_list())
Assets: ['6B=F', 'CL=F', '6E=F', 'GC=F', 'LE=F', 'SI=F', 'ZS=F', 'ZB=F']

Launch GUI and Run Backtest¶

In [18]:
launch_gui(env, api)
[FORCED LIQUIDATION] 6E=F: current qty=42, submitting side=sell, qty=42
[FORCED LIQUIDATION] GC=F: current qty=12, submitting side=sell, qty=12
[FORCED LIQUIDATION] ZB=F: current qty=48, submitting side=sell, qty=48
[FORCED LIQUIDATION] ZS=F: current qty=71, submitting side=sell, qty=71
[FORCED LIQUIDATION] CL=F: current qty=-30, submitting side=buy, qty=30

Backtesting Results¶

Show Statistics¶

In [19]:
# Minimal: pull stats from the running/backtested engine and show them inline

import pandas as pd
from IPython.display import display

stats = api.get_stats_snapshot()   # live snapshot; safe to call anytime

# Portfolio (one row)
display(pd.DataFrame([{
    "Initial Cash":   stats["portfolio"].get("initial_cash", 0.0),
    "Final Equity":   stats["portfolio"].get("total_equity", 0.0),
    "Used Margin":    stats["portfolio"].get("used_margin", 0.0),
    "Max Drawdown %": 100.0 * stats["portfolio"].get("max_drawdown", 0.0),
}]))

# Per-asset table
display(pd.DataFrame.from_dict(stats["per_asset"], orient="index").reset_index().rename(columns={"index":"Symbol"}))
Initial Cash Final Equity Used Margin Max Drawdown %
0 1000000.0 5.889556e+06 0.0 28.627453
Symbol trades wins losses long_trades short_trades win_rate avg_win avg_loss profit_factor expectancy commission_total fee_total max_drawdown
0 6B=F 348 132 216 179 169 0.379310 43896.354166 -21282.175925 1.260470 3440.714799 69756.0 1044.0 6.750011e+15
1 CL=F 305 114 191 166 139 0.373770 42802.719299 -26202.094240 0.975005 -410.131147 19052.0 915.0 2.814000e+16
2 6E=F 329 120 209 162 167 0.364742 38847.447917 -22993.869618 0.970030 -437.765957 42996.0 987.0 3.500225e+14
3 GC=F 377 153 224 228 149 0.405836 55106.274517 -25677.008926 1.465885 7107.718837 23544.0 1131.0 8.715908e+00
4 LE=F 346 137 209 219 127 0.395954 44492.554747 -26838.899520 1.086668 1405.057805 57044.0 1038.0 2.970022e+15
5 SI=F 431 161 270 231 200 0.373550 55989.596275 -27616.111110 1.208946 3614.791185 27248.0 1293.0 1.497863e+01
6 ZS=F 331 111 220 166 165 0.335347 48919.594594 -26392.159091 0.935208 -1136.555891 44204.0 993.0 3.750000e+15
7 ZB=F 305 117 188 136 169 0.383607 42009.882476 -26481.216756 0.987283 -207.581968 30760.0 915.0 8.312057e+00

Show Equity Curve¶

In [20]:
# Assuming `s` is the equity Series you already built
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter

# Times + equity (portfolio). Safe to call anytime; uses the engine's live history.
times, equity = api.get_equity_series()   # None -> portfolio; pass a symbol for per-asset

n = min(len(times), len(equity))
if n == 0:
    print("No equity data available yet.")
else:
    s = pd.Series(equity[:n], index=pd.to_datetime(times[:n])).dropna()

    # (Optional) smooth gaps like weekends/holidays:
    s = s.resample("h").last().ffill()

    fig, ax = plt.subplots(figsize=(10, 4))
    ax.plot(s.index, s.values)
    ax.set_title("Portfolio Equity")
    ax.set_xlabel("Time"); ax.set_ylabel("Equity ($)")
    ax.grid(True)
    
    # Turn off scientific notation/offset and format with commas
    ax.ticklabel_format(axis='y', style='plain', useOffset=False)
    ax.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: f'${x:,.0f}'))
    
    fig.autofmt_xdate()
    plt.show()
No description has been provided for this image
In [ ]: